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Light-matter interaction

Who am I?
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Biophysics

Chemistry

Physics

Iridescence in bird 
feathers and their 
nanoscopic 
structure

Spin-photon 
interactions of 
molecules dispersed in 
different solvents

Graphene devices 
functionalized with 
Photosystem I
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Doctorate

(Mo+1/V0)

QuanTELCO
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Post-Doctorate
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Now
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Lab jargon, implementation strategies and challenges, etc. 

What about you?
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• Spin-photon interfaces, their applications and the current contenders

• Some demonstrations:
• The NV center in diamond: a prototypical system (not the best!) with 

demonstrations in the three second-generation quantum technologies 

• Quantum communication protocols with solid state quantum memories

• What makes a good platform for implementation of each quantum 
technology?

• What are the main outstanding experimental challenges?

The course
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• Wednesday (06/08/2025) – Introduction: the need for spin-photon interfaces, 
examples of solid state spin-photon interfaces, the NV system in diamond

• Thursday (07/08/2025) – The NV system in diamond: spin control protocols 
and implementation as quantum sensing and quantum computing platform.

• Saturday (09/08/2025) – Quantum communication demonstrations using the 
NV and alternative systems.

Agenda
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• Second generation quantum technologies
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Quantum 
Computing

Quantum 
Communication

Quantum Sensing

SUPERPOSITION: 𝝍 = 𝐜𝐨𝐬
𝜽

𝟐
𝟎 + 𝒆𝒊𝝓𝐬𝐢𝐧

𝜽

𝟐
𝟏

ENTANGLEMENT: 𝝍𝑨,𝑩 = 𝟎𝑨𝟎𝑩 + 𝟏𝑨𝟏𝑩
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• Superconducting Devices
• Si Quantum Dots
• Trapped atoms or ions
• Nuclear Spins
• Photons
• ...

• Photons +
• Quantum dots in III-V 

semiconductors (GaAs, InGaAs, 
etc.)

• Rydberg systems
• Trapped atoms or ions
• ...

• Atomic vapor cells
• Trapped atoms or ions
• SQUIDs
• Defects in solids...

Systems with some quantized degree of freedom, relatively isolated from 
interactions with their environment, and amenable to quantum control

• What are the platforms being considered?

Quantum memories with 
optical access
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Quantum memories with 
optical access

• Systems where I can entangle a local degree of freedom (spin, 
electronic state, etc.) to the degree of freedom of a single photon 
(time bin, polarization, etc)

The emitted photon depends on the 
state of the local qubit (and the state 
of the qubit depends on the photon 
absorbed!)
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Quantum 
computing

Quantum processor

|𝐴⟩ |𝐵⟩ |𝐶⟩

...
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Quantum 
computing

Quantum processor

|𝐴⟩|𝐵⟩ |𝐶⟩

...
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Quantum 
computing

Quantum processor

|𝐴⟩ |𝐵⟩ |𝐶⟩

...
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Quantum 
computingN qubits N qubits
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Quantum 
computingN qubits N qubits

Requirements:

• The spin has an efficient interface – emits 

photons 'on demand'

• spin coherence time large enough to 

perform multiple gate operations 
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Quantum 
communication

Credit: Gabriel Horacio
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Quantum 
communication
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Quantum 
communication
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How to synchronize these processes?

Quantum 
communication
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Photon 2 
Spin

Photon 3 

The final state of the spin depends on the states of photons 2, 3 

Bell measurement on spin projects photons 1 and 4 into an entangled state

1 2 3 4
Requirements:

• The spin has an efficient interface (few 

attempts, the two photons must 

interact with probability close to 1)

• The coherence time of the spin must be 

large enough to sustain the coherent 

state until the arrival of the next photon: 

(for 10 km of fiber, 𝜏 ≫
𝑙𝑓𝑖𝑏𝑟𝑎

𝑐
, 𝜏 ≫ 30 𝜇𝑠

Quantum 
communication
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Quantum Sensors

𝑖ℏ
𝜕

𝜕𝑡
𝜓 𝑡 = (𝐻0+𝑉 𝑡 )|𝜓 𝑡 ⟩

The evolution of coherent quantum states 
provides information about local fields (AC 
and DC)

Quantum 
sensing

Requirements:

• Non-invasive reading (via sensor

illumination, for example)

• Versatility of operation: the sensor must be able to 

be initialized, function in different environments, 

etc

• The sensor is sensitive to external stimuli

• The coherence time of the sensor must be large 

enough to allow phase acquisition due to very 

small stimuli
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• Wednesday (06/08/2025) – Introduction: the need for spin-photon interfaces, 
examples of solid-state spin-photon interfaces, the NV system in diamond

• Thursday (07/08/2025) – The NV system in diamond: electronic structure, 
spin control protocols and implementations as quantum sensors.

• Saturday (09/08/2025) – Quantum communication demonstrations using the 
NV and alternative systems.

Agenda
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• (SA) Quantum dots in III-V 
semiconductors (GaAs, 
InGaAs, etc.)

• Rydberg systems
• Trapped atoms or ions
• Rare earth impurities
• Defects in solids

How to trap ions (for an 
actual quantum optician)

A trap
A vacuum chamber
Atoms
An ionization method
An observation method

How to trap ions (for a 
condensed matter 
scientist)

Put them inside a crystal

And then ensure that the 
Fermi level is correct, that 
you can couple light in and 
out, that it’s isolated from 
crystalline degrees of 
freedom, etc etc. 
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• (SA) Quantum dots in III-V 
semiconductors (GaAs, 
InGaAs, etc.)

• Rydberg systems
• Trapped atoms or ions
• Rare earth impurities
• Defects in solids

Spin requirements: 
Long coherence times, (unique) addressability

Optical requirements:
On-demand coherent photons (source functions as a generator 
of single, indistinguishable photons) that can be entangled with 
spin
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Quantum dots in III-V materials
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Quantum dots in III-V materials
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Quantum dots in III-V materials
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Quantum dots in III-V materials
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Quantum dots in III-V materials
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• (SA) Quantum dots in III-V 
semiconductors (GaAs, 
InGaAs, etc.)

• Rydberg systems
• Trapped atoms or ions
• Rare earth impurities
• Defects in solids

Spin requirements: 
Long coherence times, (unique) addressability

Optical requirements:
On-demand coherent photons (source functions as a generator 
of single, indistinguishable photons) that can be entangled with 
spin
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Rare earth atoms and ions in solids
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Rare earth atoms and ions in solids
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• (SA) Quantum dots in III-V 
semiconductors (GaAs, 
InGaAs, etc.)

• Rydberg systems
• Trapped atoms or ions
• Rare earth impurities
• Defects in solids

Spin requirements: 
Long coherence times, (unique) addressability

Optical requirements:
On-demand coherent photons (source functions as a generator 
of single, indistinguishable photons) that can be entangled with 
spin
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> 6 eV

Color centers in insulators and semiconductors 'Artificial' molecular systems that 
are stabilized by the crystal
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• Wednesday (06/08/2025) – Introduction: the need for spin-photon interfaces, 
examples of solid-state spin-photon interfaces, the NV system in diamond

• Thursday (07/08/2025) – The NV system in diamond: electronic structure, 
spin control protocols and implementations as quantum sensors.

• Saturday (09/08/2025) – Quantum communication demonstrations using the 
NV and alternative systems.

Agenda
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Electronic spin 

Photons

Nuclear spin EM fields Temperature,
pressure, …
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> 6 eV

Diamond Electronic Structure

1s2, 2s2, 2p2

4 valence electrons

Arises from completely filled 
2sp3 orbitals 

Arises from completely empty 
3s orbitals
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The NV system

Nitrogen

vacancy

C1 C2 C3
N
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The NV system – the symmetries!

e1 e2

a

N

C3

Orbital a:      C1 + C2 + C3

Orbitals e: 2C1 – C2 – C3
     2C2 – C3 – C1
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The NV0 – a defect with spin 1/2

e1 e2

a

N

C3

Orbital a:      C1 + C2 + C3

Orbitals e: 2C1 – C2 – C3
     2C2 – C3 – C1
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The NV- – a defect with spin 1

e1 e2

a

N

C3

Orbital a:      C1 + C2 + C3

Orbitals e: 2C1 – C2 – C3
    2C2 – C3 – C1Ground State
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The NV- – a defect with spin 1

N

C3

Excited state
N

Ground State

Spin total = 1 Spin total = 0

N

N
Excited state

Excited state

N
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The NV- – a defect with spin 1

C3

Spin total = 1 Spin total = 0

63
7 

nm
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NV- interacts with the crystal via phonons

Spin total = 1 Spin total = 0

63
7 

nm

C3
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NV- interacts with the crystal via phonons

Spin total = 1 Spin total = 0

63
7 

nm

C3
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The NV- – Fine structure of the ground state

C3

Spin total = 1 Spin total = 0

63
7 

nm
𝑚𝑠 = 0 =

↑↓ + ↓↑

2

𝑚𝑠 = +1 = | ↑↑⟩

𝑚𝑠 = −1 = | ↓↓⟩
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The NV- – Fine structure of the ground state

C3

Spin total = 1 Spin total = 0

63
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nm
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The NV- – Fine structure of the ground state
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The NV- – Fine structure of the ground state

C3

Spin total = 1 Spin total = 0

63
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nm

𝑚𝑠 = 0 =
↑↓ + ↓↑

2

𝑚𝑠 = +1 = | ↑↑⟩

𝑚𝑠 = −1 = | ↓↓⟩

06/08/2025



The NV- – Fine structure of the ground state

C3

Spin total = 1 Spin total = 0

63
7 

nm

𝑚𝑠 = 0 =
↑↓ + ↓↑

2

𝑚𝑠 = +1 = | ↑↑⟩

𝑚𝑠 = −1 = | ↓↓⟩
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The NV- – Fine structure of the ground state

C3

Spin total = 1 Spin total = 0

63
7 

nm

𝑚𝑠 = 0 =
↑↓ + ↓↑

2

𝑚𝑠 = +1 = | ↑↑⟩

𝑚𝑠 = −1 = | ↓↓⟩

ZFS (zero-field splitting) = 2.8 GHz
Arises from the magnetic 
dipole interaction between the 
two spins
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The NV- – Fine structure of the ground state

C3

Spin total = 1 Spin total = 0

63
7 

nm

𝑚𝑠 = 0

𝑚𝑠 = +1

𝑚𝑠 = −1
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The NV- – photodynamics

C3

Spin total = 1 Spin total = 0

63
7 

nm
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The NV- – photodynamics

C3

Spin total = 1 Spin total = 0

63
7 

nm
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The NV- – photodynamics

C3

Spin total = 1 Spin total = 0

63
7 

nm
Consequence 1: The photon 
emission rate of NV depends on 
the spin state! I can read the 
spin state by detecting the 
emitted photons
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The NV- – photodynamics

C3

Spin total = 1 Spin total = 0
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The NV- – photodynamics

C3

Spin total = 1 Spin total = 0
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The NV- – photodynamics

C3

Spin total = 1 Spin total = 0
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The NV- – photodynamics

C3

Spin total = 1 Spin total = 0

Consequence 2: Nv illumination 
allows  you to initialize the spin 
through repeated optical 
transitions (even at room 
temperature, and non-
resonantly!)
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The NV- – photodynamics

C3

Spin total = 1 Spin total = 0

Consequence 2: NV 
illumination allows  you to 
initialize the spin through 
repeated optical transitions 
(even at room temperature, and 
non-resonantly!)

Consequence 1: The photon 
emission rate of NV depends on 
the spin state! I can read the 
spin state by detecting the 
emitted photons
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The NV-

C3

Spin total = 1 Spin total = 0

O
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Spin

Qubit Operation Loop

Manipulation

Q

Q

Initialization

Readout

Q
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