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Bipartite Entanglement



Entanglement

Alice and Bob share a state |ψ⟩.

Definition: A pure state |ψ⟩ is separable iff it is a product state:

|ψ⟩ = |a⟩A|b⟩B = |a, b⟩.

Otherwise it is called entangled.

Examples

Separable states:

|ϕ1⟩ = |01⟩, |ϕ2⟩ = |00⟩+ |01⟩+ |10⟩+ |11⟩ = (|0⟩+ |1⟩)(|0⟩+ |1⟩)

Entangled states

|ψ1⟩ = |01⟩+ |10⟩, |ψ2⟩ = |00⟩+ |01⟩+ |10⟩ − |11⟩



Entanglement

Properties of entanglement

Entanglement is invariant under local changes of the basis.

Entanglement is necessary for a Bell inequality violation.

Entanglement is a resource for teleportation & cryptography.

Bell states

Popular entangled states are the Bell states:

|ψ−⟩ = |01⟩ − |10⟩, |ψ+⟩ = |01⟩+ |10⟩,
|ϕ−⟩ = |00⟩ − |11⟩, |ϕ+⟩ = |00⟩+ |11⟩.

They are maximally entangled.



The Schmidt decomposition

Decomposition

For any bipartite state there are local bases for Alice and Bob such that

|ψ⟩ =
R∑
i=1

si |ii⟩.

The si are the Schmidt coefficients, positive and unique. The number R is
the Schmidt rank of the state.

Maximally entangled states

A bipartite state is maximally entangled, if the marginals are max. mixed

ϱA = TrB(|ψ⟩⟨ψ|) =
1

d
⇔ si =

1√
d

Examples: Bell states and |ϕ+⟩ = (
∑

i |ii⟩)/
√
d .
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Three qubits



Multiparticle entanglement

There are different possibilities:

Fully separable:
|ψfs⟩ = |000⟩

Biseparable:
|ψbs⟩ = |0⟩ ⊗ (|00⟩+ |11⟩)

Genuine multiparticle entangled:

|GHZ ⟩ = |000⟩+ |111⟩ or |W ⟩ = |001⟩+ |010⟩+ |100⟩

|GHZ ⟩ and |W ⟩ are generalized Bell states. What’s the difference?
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Local unitary equivalence

Simple observation

GHZ and W state have different one-qubit marginals

ϱGHZA =
1

2
(|0⟩⟨0|+ |1⟩⟨1|), ϱWA =

2

3
|0⟩⟨0|+ 1

3
|1⟩⟨1|.

They cannot be LU equivalent.

General fact

There is no Schmidt decomposition for multiparticle systems.
But: Any three-qubit state can be simplified via LU to

|ψ⟩ = λ0|000⟩+ λ1e
iθ|100⟩+ λ2|101⟩+ λ3|110⟩+ λ4|111⟩,

with λi ≥ 0 and 0 ≤ θ ≤ π.

A. Peres, PLA 202, 16 (1995); A. Acin et al., PRL 85, 1560 (2000).
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LOCC

Local operations and classical communication

LOCC transformations are a sequence of steps where
each party either

adds an ancilla quantum system,

applies a local unitary transformation,

performs a measurement and communicates the
result.

LOCC protocols may require infinitely many rounds ...

Figure: S. Akibue et al., PRA 96, 062331 (2017).

Nielsen’s theorem: For bipartite states |ψ⟩ LOCC−→ |ϕ⟩ is possible iff

s⃗(ψ) ≺ s⃗(ϕ)⇔ s1(ψ) ≤ s1(ϕ), s1(ψ) + s2(ψ) ≤ s1(ϕ) + s2(ϕ)...

For multipartite systems, LOCC orbits are difficult ...

M.A. Nielsen, PRL 83, 436 (1999), J.I. de Vicente et al., PRL 111, 110502 (2013).
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SLOCC

Stochastic LOCC

Given a single copy of |ψ⟩ can we achieve with some probability p > 0

|ψ⟩ SLOCC−→ |ϕ⟩

with LOCC?

Mathematical formulation

One can reach |ψ⟩ SLOCC−→ |ϕ⟩ iff there are matrices A,B, and C such that

|ϕ⟩ = A⊗ B ⊗ C |ψ⟩.

If the matrices are invertible, then |ψ⟩ and |ϕ⟩ are SLOCC equivalent.
W. Dür, G. Vidal, J.I. Cirac, PRA 62, 062314 (2000).
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Equivalence classes for three qubits

Result

One cannot transform

|GHZ ⟩ = |000⟩+ |111⟩
SLOCC

↚→ |W ⟩ = |001⟩+ |010⟩+ |100⟩

Any other fully entangled state can be transformed into |GHZ ⟩ or |W ⟩.
W. Dür, G. Vidal, J.I. Cirac, PRA 62, 062314 (2000).

Six classes of entanglement

For more that three qubits there are infinitely many equivalence classes.
F. Verstraete, J. Dehaene, B. De Moor, PRA 68, 012103 (2003).



Equivalence classes for three qubits

Result

One cannot transform

|GHZ ⟩ = |000⟩+ |111⟩
SLOCC
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Mathematical generalization: Tensor rank

Observation

The rank R of a matrix Mij can be defined via the minimal decomposition
into rank-one matrices,

Mij =
∑R

r=1
a
(r)
i b

(r)
j .

This can be generalized to the tensor rank,

Tijk =
∑R

r=1
a
(r)
i b

(r)
j c

(r)
k

Tensor rank over R and C differ.

Matrix multiplication can be formalized using a specific tensor.
Knowing its rank simplifies algorithms.
V. Strassen, J. Reine Angewandte Math. 264, 184 (1973).

The tensor rank is very difficult to calculate.
A. Fawzi et al., Nature 610, 47 (2022).
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Application to quantum states

For pure states, tensor rank asks for the minimal decomposition

|ψ⟩ =
∑R

r=1
|a(r)⟩|b(r)⟩|c(r)⟩

into (not necessarily orthonormal) product vectors.

This is invariant under invertible SLOCC, |ψ⟩ 7→ A⊗ B ⊗ C |ψ⟩.

The GHZ state has tensor rank 2, the W state tensor rank 3.

The tensor rank can be seen as a quantifier of entanglement, the
Schmidt measure.

Interestingly,

|GHZ ⟩ = |000⟩+ |111⟩ SLOCC∼ (|0⟩+ ε|1⟩)⊗3 − |000⟩ ε→0−→ |W ⟩

⇒ W states form a set of measure zero [θ = λ4 = 0 in SLD].

J. Eisert, H.-J. Briegel, PRA 64, 022306 (2001)
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Back to physics: Bell inequalities for the GHZ state

Consider three particles with the measurements X1,Y1, ...,X3,Y3

and the measurement results ±1.

What is

X1X2X3 − Y1Y2X3 − X1Y2Y3 − Y1X2Y3 =?

We have (Y1Y2X3)× (X1Y2Y3)× (Y1X2Y3) = X1X2X3

⇒ (Y1Y2X3) = (X1Y2Y3) = (Y1X2Y3) = −1 and X1X2X3 = 1 is
impossible.

Mermin inequality

So
X1X2X3 − Y1Y2X3 − X1Y2Y3 − Y1X2Y3 ≤ 2.

D. Greenberger, M. Horne, A. Zeilinger, arXiv:0712.0921, D. Mermin, PRL 1991.
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The GHZ argument

Consider then the GHZ state

|GHZ ⟩ = |000⟩+ |111⟩

and X ,Y ,Z are the Pauli matrices

X =

(
0 1
1 0

)
; Y =

(
0 −i
i 0

)
; Z =

(
1 0
0 −1

)
;

The GHZ state is an eigenstate

X1X2X3|GHZ ⟩ = |GHZ ⟩; Z1Z21|GHZ ⟩ = |GHZ ⟩;
Z11Z3|GHZ ⟩ = |GHZ ⟩; 1Z2Z3|GHZ ⟩ = |GHZ ⟩.



The GHZ argument

So: |GHZ ⟩ is also an eigenstate of the products

(X1X2X3)× (Z1Z21)|GHZ ⟩ = (−Y1Y2X3)|GHZ ⟩ = |GHZ ⟩

Hence
⟨GHZ |(−Y1Y2X3)|GHZ ⟩ = 1

Finally

⟨X1X2X3⟩ − ⟨Y1Y2X3⟩ − ⟨X1Y2Y3⟩ − ⟨Y1X2Y3⟩ = 4.

Where is the mistake?
Note: Experimentally, one finds

⟨X1X2X3⟩ − ⟨Y1Y2X3⟩ − ⟨X1Y2Y3⟩ − ⟨Y1X2Y3⟩ = 2.82.

J.W. Pan et al, Nature 1999, more recent experiments found values close to four.
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Hidden assumptions

While proving X1X2X3 − Y1Y2X3 − X1Y2Y3 − Y1X2Y3 ≤ 2 two
assumptions have been made

Measurements have values ±1 independently of whether they are
measured or not (realism)

The value of X1 does not depend on whether X2 or Y2 is measured
(locality)

One of these assumptions must be wrong

⇒ GHZ states are non-local in an extreme manner.
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Properties of the W state

Entanglement in marginals

For the GHZ state, the two-body marginal is separable.

ϱAB =
1

2
(|00⟩⟨00|+ |11⟩⟨11|)

For the W state the marginal is entangled. In fact there is no state
with more entanglement in the marginals.

The W state is uniquely determined by the marginals, the GHZ
state not.
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What are the interesting multiqubit states?

The GHZ states violate Bell inequalities maximally:

|GHZ ⟩ = |0000⟩+ |1111⟩

The W-states are robust against qubit loss:

|W ⟩ = |1000⟩+ |0100⟩+ |0010⟩+ |0001⟩

The cluster states are useful for the one-way quantum computer:

|CL⟩ = |0000⟩+ |1100⟩+ |0011⟩ − |1111⟩

The Dicke states are often easy to prepare:

|D⟩ = |0011⟩+ |0101⟩+ |1001⟩+ |0110⟩+ |1010⟩+ |1100⟩

The singlet states are U ⊗ ...⊗ U invariant:

|ψ(4)⟩ = |0011⟩+ |1100⟩ − 1

2
(|10⟩+ |10⟩)⊗ (|10⟩+ |10⟩)



Beyond three qubits



Multipartite entanglement

Definition

A pure N-qubit state |ψ⟩ is k-separable, if we can write

|ψ(n)⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ ...⊗ |ϕk⟩,

that is, the system can be divided into k uncorrelated parts.

Examples for four qubits:

|ψfs⟩ = |0000⟩ is fully separable,

|ψts⟩ = |00⟩ ⊗ (|00⟩+ |11⟩) is 3-separable,

|ψbs⟩ = |0⟩ ⊗ (|000⟩+ |111⟩) is biseparable,

|GHZ4⟩ = |0000⟩+ |1111⟩ is truly multipartite entangled.
A. Acin, D. Bruß, M. Lewenstein, A. Sanpera, PRL 87, 040401 (2001).
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Classifications

Problem

Task: Simplify an N-particle state via local operations,

|ψ⟩ 7→ TA ⊗ TB ⊗ · · · ⊗ TN |ψ⟩

The number of parameters of all Ti scales linearly.

The number of parameters of |ψ⟩ scales exponentially.

⇒ There will be a continuum of equivalence classes.

Result for qubits

Make the single-qubit marginals diagonal in z basis.

In the generic case ϱI ̸= 1/2: ⇒ Only one candidate for LU

If ϱI = 1/2: One can also also decide LU equivalence

B. Kraus, PRL 104, 020504 (2010)
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Maximally entangled states

Results and Questions

A bipartite pure state is maximally entangled, if the marginals are
maximally mixed.

For four qubits, there is no state that is maximally entangled for any
bipartition.

What happens for general states of N particles?

Phys. Lett. A 273, 213 (2000)



Maximally entangled states

Results and Questions

A bipartite pure state is maximally entangled, if the marginals are
maximally mixed.

For four qubits, there is no state that is maximally entangled for any
bipartition.

What happens for general states of N particles?

Phys. Lett. A 273, 213 (2000)



Absolutely Maximally Entangled states

Results on AME states

An N-particle state where all ⌊N/2⌋-particle reduced states are
maximally mixed is called AME.

Examples: Bell states, GHZ states, quantum codewords, ...

AME states correspond to ((N, 1, ⌊N/2⌋+ 1))D quantum codes.

If D is large enough, they exist for any N.

Qubits: They exist for N = 2, 3, 5, 6 but not for N = 4 and N ≥ 8.

So what happens for N = 7?
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The seven qubit case

First result

There is no AME state for seven qubits.

Second result

The best approximation to a seven qubit AME state is a graph state where
32 of the 35 three-body density matrices are maximally mixed.

F. Huber et al., PRL 118, 200502 (2017).
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AME(4,6)

Another long-standing question

Does there exist an AME of four six-dimensional systems?

This is a quantum version of Euler’s problem of orthogonal lattice squares.

Final result

This AME state exists!

S. A. Rather, PRL 128, 080507 (2022); D. Garisto, Quanta Magazine 2022
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General strategies

Rains’ shadow inequality

Consider positive operators X and Y on N particles and T ⊂ {1, . . . ,N}.
Then: ∑

S⊂{1,...,N}

(−1)|S∩T |TrS
[
TrSc (X )TrSc (Y )

]
≥ 0

Application to the AME problem

Assume that an AME state |ψ⟩ exists and set X = Y = |ψ⟩⟨ψ|.

Since |ψ⟩ is AME, many
[
TrSc (X )2

]
in the SI are known as

proportional to the identity.

If one finds a contradiction, the AME does not exist.

E.M. Rains, IEEE Trans. Inf. Theory 46, 54 (2000); F. Huber et al., JPA 51, 175301 (2018)
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General results

Using similar ideas and the theory of weight and shadow enumerators we
can exclude many more cases:

4 8 12 16 20 24 28 32 36 40 44 48 52 56
number of parties n (even only)

2
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5
6

lo
ca

l d
im

. D
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number of parties n (odd only)
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F. Huber et al., JPA 51, 175301 (2018), for updates see: http://www.tp.nt.uni-siegen.de/+fhuber/ame.html.



Entanglement measures



The three tangle

Question

A state |ψ⟩ in the W class is characterized by the possibility that

|W ⟩ = A⊗ B ⊗ C |ψ⟩

Which algebraic constraints for |ψ⟩ guarantee a solution?

Three tangle

For |ψ⟩ =
∑

ijk aijk |ijk⟩ we have:

τ3(|ψ⟩) = 4|d1 − 2d2 + 4d3|

This is nonzero iff |ψ⟩ is in the GHZ class.

V. Coffman et al., PRA 61, 052306 (2000)
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Monogamy

For any three-qubit state, one has

C 2
A|BC (|ψ⟩) = C 2

A|B(ϱAB) + C 2
A|C (ϱAC ) + τ3(|ψ⟩)

with C 2 being the squared concurrence.

For GHZ: C 2
A|B = C 2

A|C = 0, so τ3 is maximal.

For W: C 2
A|B and C 2

A|C large and τ3 = 0.

V. Coffman et al., PRA 61, 052306 (2000), T. J. Osborne, F. Verstraete, PRL 96, 220503 (2006); C. Eltschka, J.

Siewert, PRL 114, 140402 (2015)



The geometric measure

Definition

Given a pure multipartite state |φ⟩, define

Λ2(φ) = max
|a⟩,|b⟩,|c⟩

|⟨a, b, c |φ⟩|2

Then the geometric measure is given by

EG (φ) = 1− Λ2

Remarks

For mixed states ϱ =
∑

k pk |φk⟩⟨φk |, one takes the convex roof

EG (ϱ) = min
pk ,φk

∑
k
pkEG (φk)

For simplicity, we will focus in this talk on two and three parties.

T.C. Wei, P.M. Goldbart, PRA 68, 042307 (2003); L. Weinbrenner et al., arXiv:2505.01394.
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Examples

For a bipartite state |φ⟩ =
∑

i si |ii⟩ we have

Λ2(φ) = s21 = squared maximal Schmidt coefficient

For the GHZ state,

|GHZ ⟩ = 1√
2
(|000⟩+ |111⟩)

one gets an upper bound Λ2 ≤ 1/2 by considering bipartitions
|ψab⟩|c⟩ and the corresponding Schmidt coefficients.

This bound can be reached by the state |000⟩:

⇒ Λ2(GHZ ) =
1

2



Examples

For a bipartite state |φ⟩ =
∑

i si |ii⟩ we have

Λ2(φ) = s21 = squared maximal Schmidt coefficient

For the GHZ state,

|GHZ ⟩ = 1√
2
(|000⟩+ |111⟩)

one gets an upper bound Λ2 ≤ 1/2 by considering bipartitions
|ψab⟩|c⟩ and the corresponding Schmidt coefficients.

This bound can be reached by the state |000⟩:

⇒ Λ2(GHZ ) =
1

2



Examples

For symmetric states |φsym⟩ = ΠS |φsym⟩ the closest product state
is symmetric

Λ2(φsym) = max
|a⟩
|⟨a, a, a|φsym⟩|2

For the W state,

|W ⟩ = 1√
3
(|001⟩+ |010⟩+ |100⟩)

this leads to a one-parameter optimization, resulting in

⇒ Λ2(W ) =
4

9
<

1

2

The W state is more entangled than the GHZ state.

R. Hübener et al., PRA 80, 032324 (2009)
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Numerical computation

Simple iteration

Take |ψ⟩ and fix |b⟩ for Bob and |c⟩ for Charlie.

Compute for Alice the state

|χ⟩ = ⟨b|⟨c |ψ⟩

The optimal |a⟩ is proportional to |χ⟩

|a⟩ = 1

N
|χ⟩

Then: Fix |a⟩ and |c⟩ and compute the optimal |b⟩. Iterate!

This works well for up to eight qubits.

O. Gühne et al., PRL 98, 110502 (2007); S. Gerke et al., PRX 8, 031047 (2018)



Numerical computation

Simple iteration

Take |ψ⟩ and fix |b⟩ for Bob and |c⟩ for Charlie.

Compute for Alice the state

|χ⟩ = ⟨b|⟨c |ψ⟩

The optimal |a⟩ is proportional to |χ⟩

|a⟩ = 1

N
|χ⟩

Then: Fix |a⟩ and |c⟩ and compute the optimal |b⟩. Iterate!

This works well for up to eight qubits.

O. Gühne et al., PRL 98, 110502 (2007); S. Gerke et al., PRX 8, 031047 (2018)



Properties

Interpretation: A set of states {|ψi ⟩} with high geometric measure is
difficult to distinguish locally.

M. Hayashi et al., PRL 96, 040501 (2006).

The quantity Λ2(ψ) is also called the injective tensor norm, related
to tensor eigenvalues

A. Montanaro, “Injective tensor norms and open problems in QI”; L. Qi, J. Symb. Comput. 40, 1302 (2005)

Scaling of Λ2: Generic states of many particles are highly entangled

M. J. Bremner et al., PRL 102, 190502 (2009); D. Gross et al., PRL 102, 190501 (2009).



What are maximally entangled states?

n Gmax |φ⟩max

2 1/2 |ψ−⟩
3 0.5555 ≈ 5/9 |W⟩
4 0.7777 ≈ 7/9 |M⟩
5 0.8686 ≈ (1/36)(33−

√
3) |G5⟩

6 0.9166 ≈ 11/12 |G6⟩
7 ≥ 0.941 MMS(7, 2)

|M⟩ = 1√
3
(|GHZ4⟩+ e2πi/3σ(3)

x σ(4)
x |GHZ4⟩+ e4πi/3σ(2)

x σ(4)
x |GHZ4⟩)

J. Steinberg et al., PRA 110, 062428 (2024)



Possible generalizations

Instead of fully product states one can also consider the overlap

Θ2(φ) = max
|η⟩
|⟨η|φ⟩|2

with

biseparable states,

|η⟩ = {|ψab⟩|c⟩ or |a⟩|ψbc⟩ or |ψac⟩|b⟩}

states with fixed tensor rank

|η⟩ = |a, b, c⟩+ |α, β, γ⟩

superpositions of biseparable states

|η⟩ = |ψab⟩|c⟩+ |a⟩|ψbc⟩+ |ψac⟩|b⟩

These and other problems (like LU optimization) are mathematically more
or less equivalent to the original problem.
S. Denker, I. Septembre, in preparation.



Conclusion

There is no clear “maximally entangled state” for more than two
particles.

There are different forms of multiparticle entanglement.

Multiparticle entanglement is closely related to open problems in
mathematics.
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