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General Structure

@ Lecture |: Pure states
@ Lecture ll: Mixed states

© Lecture lll: Graph states and other families of states



Schedule for Lecture Il

© Entanglement measures
© Recap: Bipartite mixed states
© Multiparticle Entanglement of mixed states

© Network entanglement
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The three tangle

Question
A state [1)) in the W class is characterized by the possibility that

W) =A® B® Cly)

Which algebraic constraints for |¢)) guarantee a solution?

Three tangle

For [1) = > aiklijk) we have:
3([1)) = 4|ch — 2d> + 4ds
dl:0300”?1|*“%m“%m*”ém“%m*‘1%00“(2“1;

dy=apa11aond@ 100t Qoo 11191014010
+agooa 1@ 1104001t o114 1004 1019010
+agnaid oo+ aio1doiod 104001 ;

d3=agooa 1104 101%011 7 @1118001%010% 100 -

This is nonzero iff 1) is in the GHZ class.

V. Coffman et al., PRA 61, 052306 (2000)



Monogamy

For any three-qubit state, one has
Chisc([9)) = Cigl0as) + Cajc(oac) + ms(l4))

with C? being the squared concurrence.
@ For GHZ: C/2\|B = Cf\lc =0, so 73 is maximal.

@ For W: Cf“B and C§|c large and 73 = 0.

-@

Tes = 7lpa) — Clpap)® — Clpac)

V. Coffman et al., PRA 61, 052306 (2000), T. J. Osborne et al., PRL 96, 220503 (2006); C. Eltschka et al., PRL

114, 140402 (2015)
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Definition

Given a pure multipartite state |¢), define

N2 = max |(a,b,clp)|?
(¢) = max_|(a.b.cle)]

Then the geometric measure is given by

Ec(p)=1-N




The geometric measure

Definition

Given a pure multipartite state |¢), define

N2 = max |(a,b,clp)|?
(¢) = max_|(a.b.cle)]

Then the geometric measure is given by

Ec(p)=1-N

Remarks

@ For mixed states o = >, pi|w«){@k|, one takes the convex roof

Ec(e) = min >, PeEc(ei)

@ For simplicity, | focus on two and three parties.

T.C. Wei, P.M. Goldbart, PRA 68, 042307 (2003); L. Weinbrenner et al., arXiv:2505.01394.
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Examples

@ For a bipartite state |p) = ). s;|ii) we have

N?(p) = s7 = squared maximal Schmidt coefficient

@ For the GHZ state,
1
V2

one gets an upper bound A% < 1/2 by considering bipartitions
[tab)|c) and the corresponding Schmidt coefficients.

|GHZ) = —(|000) + [111))

@ This bound can be reached by the state |000):

= N*(GHZ) :%




Examples

@ For symmetric states |@gym) = Ms|@sym) the closest product state
is symmetric
A2(¢Sym) == rT|1£’a>X |<a, a, a|(psym>|2




Examples

@ For symmetric states |@gym) = Ms|@sym) the closest product state
is symmetric

N (fsym) = 1ax|(a, 2, 3| psym)[?

@ For the W state,

1
W) = —(]001) + |010) + |100
1% \/g(l ) +010) + [100))
this leads to a one-parameter optimization, resulting in
4 1
NW)=_-< 2
= N (W) 5 <3

The W state is more entangled than the GHZ state.

R. Hiibener et al., PRA 80, 032324 (2009)




Numerical computation

Simple iteration
@ Take |9) and fix |b) for Bob and |c) for Charlie.

@ Compute for Alice the state

Ix) = (bl(c[¢)




Numerical computation

Simple iteration
@ Take |9) and fix |b) for Bob and |c) for Charlie.

@ Compute for Alice the state
Ix) = (bl{c|v)
@ The optimal |a) is proportional to |x)
1
a) = 20

@ Then: Fix |a) and |c) and compute the optimal |b). lterate!
@ This works well for up to eight qubits.

O. Giihne et al., PRL 98, 110502 (2007); S. Gerke et al., PRX 8, 031047 (2018)




Properties

@ Interpretation: A set of states {|¢);)} with high geometric measure is

difficult to distinguish locally.

M. Hayashi et al., PRL 96, 040501 (2006).

@ The quantity A?(¢) is also called the injective tensor norm, related

to tensor eigenvalues

A. Montanaro, “Injective tensor norms and open problems in QI"; L. Qi, J. Symb. Comput. 40, 1302 (2005)

@ Scaling of A?: Generic states of many particles are highly entangled

M. J. Bremner et al.,

probability density

3 3 3 33
1l
w Do N

PRL 102,

02 04 06 08

geometric measure

190502 (2009); D. Gross et al., PRL 102, 190501 (2009).




Mixed states of two particles




Mathematical formulation

Alice and Bob share a state [)).
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Alice and Bob share a state [)).

#
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r® ® e
A pure state |1¢) is separable if it is a product state:

) = |a)alb)s = |a, b).

Otherwise it is entangled.




Mathematical formulation

Alice and Bob share a state [)).

&
! 03

A pure state |1¢) is separable if it is a product state:
1) = |a)alb)s = |a, b).

Otherwise it is entangled.

Mixed states: Consider convex combinations. o is separable if
Q:Zi p,-|a,-)(a,-|®|b,-)<b,-|, with ,D,'ZO7 Z[ p,':]..

Interpretation: Entanglement cannot be generated by local operations and
classical communication.
R. Werner, PRA 40, 4277 (1989).




The separability problem

Open question

Given p, is it entangled or separable?




The separability problem

Open question

Given p, is it entangled or separable?

Geometrical interpretation

The set of all separable states is convex.

separable

entangled
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the eigenvalues of the matrix X
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Transposition and partial transposition

@ Transposition: The usual transposition X — X7 does not change
the eigenvalues of the matrix X

@ For a product space one can also consider the partial transposition.
fFX=A®B:
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Partial transposition and separability

Theorem. If a state is separable, then its partial transposition has no ne-
gative eigenvalues (“the state is PPT" or o' > 0).
Proof:

Osy = ZkPkQA ® 0f = ZkPkQA ® o 2 0.




The PPT criterion

Are there simple criteria to prove that a state is entangled?

Transposition and partial transposition

@ Transposition: The usual transposition X — X7 does not change
the eigenvalues of the matrix X

@ For a product space one can also consider the partial transposition.
fFX=A®B:
X"t =AB"

Partial transposition and separability

Theorem. If a state is separable, then its partial transposition has no ne-
gative eigenvalues (“the state is PPT" or o' > 0).
Proof:

Osy = ZkPkQA ® 0f = ZkPkQA ® o 2 0.

Remark: For two qubits: ¢ is PPT < g is separable.

A. Peres, PRL 77, 1413 (1996), Horodecki®3, PLA 223, 1(1996)



Geometry

NPT states




Entanglement witnesses

An observable W is an entanglement witness, if

>0 for all separable s,
Tr(Wo) { < 0 for one entangled o..

If Tr(Wp) is measured:

< 0 = pis entangled,
> 0 = no detection.

Tr(Wo) {

%

separable

\ zangﬁ:d



Entanglement witnesses

An observable W is an entanglement witness, if

>0 for all separable s,
Tr(Wo) { < 0 for one entangled .

If Tr(Wp) is measured:

< 0 = pis entangled,
Tr(Wo) { >0 = no detection.

@ For any entangled p there is a
witness.

\ @ Witnesses can be optimized (W)

\ optimal, W( not!).

separable

\/

entangled

@ Witnesses assume correct measure-
ments, contrary to Bell inequalities
v




A simple example

@ Consider a Bell state
1

[$™) = 7

(101) — [10)).

@ A witness is given by
1 -
W=o -l

@ Interpretation: If the fidelity
F = Tr(|o~){(¥|0) exceeds
F=1/2:
= p is entangled!

M. Bourennane et al., PRL 92, 087902 (2004).



A simple example

. @ Local decomposition:
@ Consider a Bell state

1

1
w = Z(]1<§<>]l+ax<g>ax
V2

[¥7) = —=(]01) — [10)).

+0, @0, +0,Q0,).

@ A witness is given by
@ Measurement gives:

1 o
W=3 =)yl
§§ 05 o o o
o Interpretation: If the fidelity =8 |_II II II_J
F = Tr(|o~){(¥|0) exceeds g =11 ... -1,1

F=1/2:

L i entangled! Tr(Wg) = —0.461 + 0.003.

The state is entangled and
F = 0.941!

M. Bourennane et al., PRL 92, 087902 (2004).



Multipartite entanglement of mixed states |




Multiparticle entanglement

There are different possibilities:

@ Fully separable: '
[4) = |000)

@ Biseparable:
[¥"®) =10) ® (/00) + [11))

@ Genuine multiparticle entangled:
|GHZ) = |000) + |111) or |W) = |001) + |010) + |100).

@ Mixed states: Convex combinations, again.




Examples and details

@ Fully separable state:
Ofs = Zk Pkl akbrci)(akbicc|.
@ Biseparable state:

1 3
ovs = 310ag) (Wl @ [0c)(Oc| + 1) (La] @ [ (ke |

@ W class state:

8 1




Examples and details

@ Fully separable state:
0t = Zk Pkl akbrci)(akbicc|.
@ Biseparable state:

1 3
ovs = 310ag) (Wl @ [0c)(Oc| + 1) (La] @ [ (ke |

@ W class state:

8 1
ow = §|W)(W| + 5010} (010,

@ The GHZ state mixed with white noise,

o(p) = p|GHZ)(GHZ| + (1 — p)%

is fully separable for p < 1/5, biseparable for p < 3/7, in the W
class for p < 0.6955 and in the GHZ class elsewhere.

C. Eltschka at al., PRL 108, 020502 (2012)




Classification of mixed three-qubit states

W class

@ The class of mixed W states is not of measure zero.
@ States can be separable for any bipartition, but not fully separable.

A. Acin, D. BruB, M. Lewenstein, A. Sanpera, PRL 87, 040401 (2001).



Witnesses for multiparticle entanglement

Witnesses for different classes of entanglement:




Witnesses for multiparticle entanglement

Witnesses for different classes of entanglement:

A typical witness for [} is

W = al = [§)(y].

eg., W=1/2—|GHZ)(GHZ|.



Problem

Separability criteria
@ There are simple criteria for two particles (e.g. PPT)
@ Can they be generalized to more particles?

@ The problem are mixtured of different bipartitions:

0" = pLojyac + P205ac + P30 s




Idea

Replace separable states by PPT states. Instead of biseparable states,
0" = P10j/pc + P205Iac + P30C g
consider PPT mixtures:

pmix

_ ppt ppt ppt
0 = plQA|BC + p2@B|AC + p39C|AB'

@ This is an SDP

PPT o
mixtures @ Often necessary and sufficient

A\l biseparable @ This can quantify multipartite
states entanglement

B. Jungnitsch et al. PRL 2011, M. Hofmann et al. JPA 2014 )




Semidefinite programming



Semidefinite programming

minimize: ¢’ X

subject to: Fy + Z’_x,-F,- >0
Here: X are variables, & coefficients, F; matrices.

@ For SDPs, certified solutions can be found (duality).

@ In practice, one can solve them with few lines of code (Mosek).
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minimize: ¢’ X

subject to: Fy + Z’_x,-F,- >0
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@ Given marginals pag and ppc, is there a global gagc with these
marginals?




Semidefinite programming

minimize: ¢’ X

subject to: Fy + Z’_x,-F,- >0
Here: X are variables, & coefficients, F; matrices.

@ For SDPs, certified solutions can be found (duality).

@ In practice, one can solve them with few lines of code (Mosek).

SDP in QIT
@ Given an observable W, what is the maximal Tr(oW) for ¢ PPT?

@ Given marginals pag and ppc, is there a global gagc with these
marginals? Both SDPs!

@ Given marginals gag and gpc, is there a pure [¢)) apc with these
marginals?




Semidefinite programming

minimize: ¢’ X

subject to: Fy + Z’_x,-F,- >0
Here: X are variables, & coefficients, F; matrices.

@ For SDPs, certified solutions can be found (duality).

@ In practice, one can solve them with few lines of code (Mosek).

SDP in QIT
@ Given an observable W, what is the maximal Tr(oW) for ¢ PPT?

@ Given marginals pag and ppc, is there a global gagc with these
marginals? Both SDPs!

@ Given marginals gag and gpc, is there a pure [¢)) apc with these
marginals? No SDP!




The resulting method

Classification via witnesses
A state g is not a PPT mixture, if and only if Tr(oW) < 0 for

W =Pat Q" =Ps+ Q" = Pc + QL

with :D,'7 Q; > 0.




The resulting method

Classification via witnesses
A state g is not a PPT mixture, if and only if Tr(oW) < 0 for

W =Pat Q" =Ps+ Q" = Pc + QL

with P,‘, Q; > 0.

Main advantages
@ This can be solved via semidefinite programming.
@ In practice, it requires only few lines of code in Mathematica
@ Numerically, it works for < 7 qubits. Analytically, up to “c0” qubits.

@ The amount of the violation is an entanglement monotone.




Results

Noise robustness

The noise robustness increases
drastically: Consider

o(p) = p1/8+ (1= p)|)(¢|

and compute maximal pyo :
state tolerances piol
new | before
|GHZ3)* | 0.571 | 0.571
|GHZ,)* | 0.533 | 0.533
| W3)* 0.521 | 0.421
| Wa) 0.526 | 0.444
|Cly)* 0.615 | 0.533
|Ds 4) 0.539 | 0.381
Vs 4) 0.553 | 0.317

B. Jungnitsch et al., PRL 106, 190502 (2011).




Results

Noise robustness

The noise robustness increases

drastically: Consider

o(p) = p1/8+ (1= p)|)(¢|

and compute maximal pyo :
state tolerances piol
new | before
|GHZ3)* | 0.571 | 0.571
|GHZ,)* | 0.533 | 0.533
| W3)* 0.521 | 0.421
| Wa) 0.526 | 0.444
|Cly)* 0.615 | 0.533
|Ds 4) 0.539 | 0.381
Vs 4) 0.553 | 0.317

B. Jungnitsch et al., PRL 106, 190502 (2011).

Permutation invariant states
For Pl states of three qubits

0 = mjjom;
the PPT mixer is necessary and

sufficient for entanglement.
L.Novo et al.,, PRA 2013

Extensions

Similar criteria for multiparticle
entanglement based on other bi-
partite criteria, such as the com-
putable cross norm / realignment
criterion.

C. Zhang, S. Denker et al., PRL 2024
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Superactivation

Two broken quantum channels may be useful!

G. Smith and J. Yard, Science 2008




Superactivation

Two broken quantum channels may be useful!

G. Smith and J. Yard, Science 2008

Two local quantum states can be nonlocal!

—= 0 —
(a1 O oo O8]
—/,,v. — .;\+ O O —/,, ~~~~~~~~~~ \+
- ®

A O noﬁ-logal O

C. Palazuelos, PRL 2012




Superactivation of GME

Tensor stability

Does a property of ¢ hold for the two-copy state ¢®?, too?
@ Bipartite separability: pap separable = g% separable
@ PPT: gap is PPT = o$3 is PPT.

@ But: TS criteria don’t detect much entanglement in high dim.

There are PPT entangled states far away from the separable states, S. Beigi, P. W. Shor, JMP 51, 042202 2010. )




Superactivation of GME

Tensor stability
Does a property of ¢ hold for the two-copy state ¢®?, too?
@ Bipartite separability: pap separable = g% separable
@ PPT: gap is PPT = o$3 is PPT.
@ But: TS criteria don’t detect much entanglement in high dim.

There are PPT entangled states far away from the separable states, S. Beigi, P. W. Shor, JMP 51, 042202 2010. )

Is biseparability tensor stable?

For a biseparable state

0 = P10AB K 0C + p20A @ 0pc + p3TB @ TAB

the two-copy state 0®? contains cross terms and is not clearly biseparable. )




Superactivation of GME

isotropic GHZ
p(p)

=GR
PoMEPGME

@ GME can be superactivated.

@ Any state that is not separable for a fixed partition becomes GME
for many copies.

@ What does this mean for multiparticle entanglement as a resource?

H. Yamasaki et al., Quantum 6, 695 (2022); C. Palazuelos et al., Quantum 6, 735 (2022); L. Weinbrenner et al.,

arXiv:2412.18331.
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Quantum networks

Many people dream of global quantum communication




Quantum networks

Many people dream of global quantum communication

J. Rabbie et al., Nature QI 2022; J. Yin et al., Nature 2020.



Theorist's perspective

@ Network of quantum nodes with physical links.
@ Entanglement is created along the links with some imperfections.
@ Which types of quantum correlations arise in this network?

@ Networks also provide a paradigm to study quantum nonlocality.

C. Branciard et al.,, PRA 2012, N. Gisin et al., Nature Comm. 2020, A. Tavakoli et al., arXiv:2104.10700



Basic idea

Consider a multipartite scenario. If a state can be generated by distributing
two-particle source states only, then it is not multiparticle entangled.




Basic idea

Consider a multipartite scenario. If a state can be generated by distributing
two-particle source states only, then it is not multiparticle entangled.

Problem
If LOCC are allowed, then any state can be prepared via teleportation.

= One has to restrict the available local operations.




Network entanglement

LOSR paradigm

Can a state be prepared using local operations & shared randomness?

e o,
9
/N
®



Network entanglement

LOSR paradigm

Can a state be prepared using local operations & shared randomness?

J

&y .

. ‘@ £
e 0a

Formally: Can the quantum state be written as:

,
0= Z p,\gl(:\) & 5‘(3)\) Y 5(CA)[Qa ® 0b ® 0c]
A

M. Navascues et al, PRL 2020; M. X. Luo, Adv. Quantum Tech. 2021; T. Kraft et al, PRA 2021



Network entanglement

) £ 8
& e.. 0

e - Z pAg'(:\) ® g(BA) ® 89)[93 ® 0b ® 0c]
A




Network entanglement

. e @ e»
X e H.ﬁ‘.ﬁse

v

A :
o 0 R
o5 A o8
o) R

g;;;ff_‘:. o S R
?
0= pEY @Y @ N0, ® 0p @ o]
A

Remarks

@ The source states p, may be high-dimensional.
@ Randomness A can be shifted from the maps to the source states.
@ No communication allowed (or possible)

@ This procedure can generate genuine multipartite entanglement.

K. Hansenne et al., Nature Comm. 2022



Quantum inflation

Idea

If a state can be generated in a network, one can consider multiple copies
of the sources, which may be wired differently.

) gl
A A
4
ANEYZAN \
C B C B C B
Cl Cl BI

E. Wolfe et al., PRX 2021; M. Navascues et al., PRL 2020, L. Ligthart et al., CMP 2023

BI



Quantum inflation

T v
A A
4
c B c B c B

@ The inflations share some marginals, e.g.,

Properties

TABC = TA'B'C’ = 0, YA'C = TAC = QAC;, 7YAC = TA'C

@ The search for v and 7 with such properties is an SDP, can be
tackled analytically or numerically.

@ We obtain fidelity bounds

Fenz <0.618, F¢ <0.7377.

M. Navascues et al, PRL 2020, K. Hansenne et al., Nat. Comm. 2022



Generalizations

Observations

@ These methods are difficult to extend to many particles.

@ One would expect: If large quantum states are considered, fidelity
bounds go exponentially down.




Generalizations

Observations

@ These methods are difficult to extend to many particles.

@ One would expect: If large quantum states are considered, fidelity
bounds go exponentially down.

Idea

If a multi-qubit state can be prepared, this may imply that GHZ states can
be prepared in triangle scenarios.

. . . L ]
- * "P'l-l"--b o.---'""'"—-—-'.
N o—e  Ref.[26] )
L




Results

@ No graph state can be prepared better than the GHZ in the triangle.

Graph state |G) Ua® UB ® Uc |G)

= FLOSR(‘G>) < 0.62

J. Neumann et al., arXiv:2503.09473



Results

@ Cluster states and other families are exponentially hard to prepare.

Cluster state |Cl,, )

= FLosr(|Clm,n)) S 0.9™"




Results

@ Cluster states and other families are exponentially hard to prepare.

Cluster state |Cl,, )

= FLosr(|Clm,n)) S 0.9™"

Main message

@ There is a fundamental difference between distributed bipartite
entanglement and multiparticle entanglement.

@ Communication and quantum memories are essential for networks.

J. Neumann et al., arXiv:2503.09473, see also X. Zhou et al., arXiv:2503.09480



Conclusion

@ There are different and inequivalent measures of multiparticle
entanglement.

@ GME can be characterized by generalizations of the PPT criterion.
@ GME can be superactivated.

@ Networks pose interesting problems for characterizing correlations.
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