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General Structure

1 Lecture I: Pure states

2 Lecture II: Mixed states

3 Lecture III: Graph states and other families of states



Schedule for Lecture II

1 Entanglement measures

2 Recap: Bipartite mixed states

3 Multiparticle Entanglement of mixed states

4 Network entanglement



Entanglement measures



The three tangle

Question

A state |ψ⟩ in the W class is characterized by the possibility that

|W ⟩ = A⊗ B ⊗ C |ψ⟩

Which algebraic constraints for |ψ⟩ guarantee a solution?

Three tangle

For |ψ⟩ =
∑

ijk aijk |ijk⟩ we have:

τ3(|ψ⟩) = 4|d1 − 2d2 + 4d3|

This is nonzero iff |ψ⟩ is in the GHZ class.

V. Coffman et al., PRA 61, 052306 (2000)
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Monogamy

For any three-qubit state, one has

C 2
A|BC (|ψ⟩) = C 2

A|B(ϱAB) + C 2
A|C (ϱAC ) + τ3(|ψ⟩)

with C 2 being the squared concurrence.

For GHZ: C 2
A|B = C 2

A|C = 0, so τ3 is maximal.

For W: C 2
A|B and C 2

A|C large and τ3 = 0.

V. Coffman et al., PRA 61, 052306 (2000), T. J. Osborne et al., PRL 96, 220503 (2006); C. Eltschka et al., PRL

114, 140402 (2015)



The geometric measure

Definition

Given a pure multipartite state |φ⟩, define

Λ2(φ) = max
|a⟩,|b⟩,|c⟩

|⟨a, b, c |φ⟩|2

Then the geometric measure is given by

EG (φ) = 1− Λ2

Remarks

For mixed states ϱ =
∑

k pk |φk⟩⟨φk |, one takes the convex roof

EG (ϱ) = min
pk ,φk

∑
k
pkEG (φk)

For simplicity, I focus on two and three parties.

T.C. Wei, P.M. Goldbart, PRA 68, 042307 (2003); L. Weinbrenner et al., arXiv:2505.01394.



The geometric measure

Definition

Given a pure multipartite state |φ⟩, define

Λ2(φ) = max
|a⟩,|b⟩,|c⟩

|⟨a, b, c |φ⟩|2

Then the geometric measure is given by

EG (φ) = 1− Λ2

Remarks

For mixed states ϱ =
∑

k pk |φk⟩⟨φk |, one takes the convex roof

EG (ϱ) = min
pk ,φk

∑
k
pkEG (φk)

For simplicity, I focus on two and three parties.

T.C. Wei, P.M. Goldbart, PRA 68, 042307 (2003); L. Weinbrenner et al., arXiv:2505.01394.



The geometric measure

Definition

Given a pure multipartite state |φ⟩, define

Λ2(φ) = max
|a⟩,|b⟩,|c⟩

|⟨a, b, c |φ⟩|2

Then the geometric measure is given by

EG (φ) = 1− Λ2

Remarks

For mixed states ϱ =
∑

k pk |φk⟩⟨φk |, one takes the convex roof

EG (ϱ) = min
pk ,φk

∑
k
pkEG (φk)

For simplicity, I focus on two and three parties.

T.C. Wei, P.M. Goldbart, PRA 68, 042307 (2003); L. Weinbrenner et al., arXiv:2505.01394.



Examples

For a bipartite state |φ⟩ =
∑

i si |ii⟩ we have

Λ2(φ) = s21 = squared maximal Schmidt coefficient

For the GHZ state,

|GHZ ⟩ = 1√
2
(|000⟩+ |111⟩)

one gets an upper bound Λ2 ≤ 1/2 by considering bipartitions
|ψab⟩|c⟩ and the corresponding Schmidt coefficients.

This bound can be reached by the state |000⟩:

⇒ Λ2(GHZ ) =
1

2
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Examples

For symmetric states |φsym⟩ = ΠS |φsym⟩ the closest product state
is symmetric

Λ2(φsym) = max
|a⟩

|⟨a, a, a|φsym⟩|2

For the W state,

|W ⟩ = 1√
3
(|001⟩+ |010⟩+ |100⟩)

this leads to a one-parameter optimization, resulting in

⇒ Λ2(W ) =
4

9
<

1

2

The W state is more entangled than the GHZ state.

R. Hübener et al., PRA 80, 032324 (2009)
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Numerical computation

Simple iteration

Take |ψ⟩ and fix |b⟩ for Bob and |c⟩ for Charlie.

Compute for Alice the state

|χ⟩ = ⟨b|⟨c |ψ⟩

The optimal |a⟩ is proportional to |χ⟩

|a⟩ = 1

N
|χ⟩

Then: Fix |a⟩ and |c⟩ and compute the optimal |b⟩. Iterate!

This works well for up to eight qubits.

O. Gühne et al., PRL 98, 110502 (2007); S. Gerke et al., PRX 8, 031047 (2018)
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Properties

Interpretation: A set of states {|ψi ⟩} with high geometric measure is
difficult to distinguish locally.

M. Hayashi et al., PRL 96, 040501 (2006).

The quantity Λ2(ψ) is also called the injective tensor norm, related
to tensor eigenvalues

A. Montanaro, “Injective tensor norms and open problems in QI”; L. Qi, J. Symb. Comput. 40, 1302 (2005)

Scaling of Λ2: Generic states of many particles are highly entangled

M. J. Bremner et al., PRL 102, 190502 (2009); D. Gross et al., PRL 102, 190501 (2009).



Mixed states of two particles



Mathematical formulation

Alice and Bob share a state |ψ⟩.

A pure state |ψ⟩ is separable if it is a product state:

|ψ⟩ = |a⟩A|b⟩B = |a, b⟩.
Otherwise it is entangled.

Mixed states: Consider convex combinations. ϱ is separable if

ϱ =
∑

i
pi |ai ⟩⟨ai | ⊗ |bi ⟩⟨bi |, with pi ≥ 0,

∑
i
pi = 1.

Interpretation: Entanglement cannot be generated by local operations and
classical communication.
R. Werner, PRA 40, 4277 (1989).
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The separability problem

Open question

Given ϱ, is it entangled or separable?

Geometrical interpretation

The set of all separable states is convex.
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The PPT criterion

Are there simple criteria to prove that a state is entangled?

Transposition and partial transposition

Transposition: The usual transposition X 7→ XT does not change
the eigenvalues of the matrix X

For a product space one can also consider the partial transposition.
If X = A⊗ B :

XTB = A⊗ BT

Partial transposition and separability

Theorem. If a state is separable, then its partial transposition has no ne-
gative eigenvalues (“the state is PPT” or ϱTB ≥ 0).
Proof:

ϱTB
sep =

∑
k
pkϱA ⊗ ϱTB =

∑
k
pkϱA ⊗ ϱ̃B ≥ 0.

Remark: For two qubits: ϱ is PPT ⇔ ϱ is separable.

A. Peres, PRL 77, 1413 (1996), Horodecki⊗3, PLA 223, 1(1996)
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Geometry



Entanglement witnesses

An observable W is an entanglement witness, if

Tr(Wϱ)

{
≥ 0 for all separable ϱs ,
< 0 for one entangled ϱe .

If Tr(Wϱ) is measured:

Tr(Wϱ)

{
< 0 ⇒ ϱ is entangled,
≥ 0 ⇒ no detection.

For any entangled ϱ there is a
witness.

Witnesses can be optimized (W(1)

optimal, W(2) not!).

Witnesses assume correct measure-
ments, contrary to Bell inequalities
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A simple example

Consider a Bell state

|ψ−⟩ = 1√
2
(|01⟩ − |10⟩).

A witness is given by

W =
1

2
− |ψ−⟩⟨ψ−|.

Interpretation: If the fidelity
F = Tr(|ψ−⟩⟨ψ−|ϱ) exceeds
F = 1/2:
⇒ ϱ is entangled!

M. Bourennane et al., PRL 92, 087902 (2004).

Local decomposition:

W =
1

4
(1⊗ 1+ σx ⊗ σx

+σy ⊗ σy + σz ⊗ σz).

Measurement gives:

Tr(Wϱ) = −0.461± 0.003.

The state is entangled and
F = 0.941!
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Multipartite entanglement of mixed states



Multiparticle entanglement

There are different possibilities:

Fully separable:
|ψfs⟩ = |000⟩

Biseparable:
|ψbs⟩ = |0⟩ ⊗ (|00⟩+ |11⟩)

Genuine multiparticle entangled:

|GHZ ⟩ = |000⟩+ |111⟩ or |W ⟩ = |001⟩+ |010⟩+ |100⟩.

Mixed states: Convex combinations, again.



Examples and details

Fully separable state:

ϱfs =
∑

k
pk |akbkck⟩⟨akbkck |.

Biseparable state:

ϱbs =
1

4
|ψ−

AB⟩⟨ψ
−
AB | ⊗ |0C ⟩⟨0C |+

3

4
|1A⟩⟨1A| ⊗ |ϕ+BC ⟩⟨ϕ

+
BC |.

W class state:

ϱW =
8

9
|W ⟩⟨W |+ 1

9
|010⟩⟨010|.

The GHZ state mixed with white noise,

ϱ(p) = p|GHZ ⟩⟨GHZ |+ (1− p)
1

8

is fully separable for p ≤ 1/5, biseparable for p ≤ 3/7, in the W
class for p < 0.6955 and in the GHZ class elsewhere.

C. Eltschka at al., PRL 108, 020502 (2012)
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Classification of mixed three-qubit states

The class of mixed W states is not of measure zero.

States can be separable for any bipartition, but not fully separable.

A. Acin, D. Bruß, M. Lewenstein, A. Sanpera, PRL 87, 040401 (2001).



Witnesses for multiparticle entanglement

Witnesses for different classes of entanglement:

A typical witness for |ψ⟩ is

W = α1− |ψ⟩⟨ψ|.

e.g., W = 1/2− |GHZ ⟩⟨GHZ |.
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Problem

Separability criteria

There are simple criteria for two particles (e.g. PPT)

Can they be generalized to more particles?

The problem are mixtured of different bipartitions:

ϱbs = p1ϱ
sep
A|BC + p2ϱ

sep
B|AC + p3ϱ

sep
C |AB .



Idea

Replace separable states by PPT states. Instead of biseparable states,

ϱbs = p1ϱ
sep
A|BC + p2ϱ

sep
B|AC + p3ϱ

sep
C |AB ,

consider PPT mixtures:

ϱpmix = p1ϱ
ppt
A|BC + p2ϱ

ppt
B|AC + p3ϱ

ppt
C |AB .

This is an SDP

Often necessary and sufficient

This can quantify multipartite
entanglement

B. Jungnitsch et al. PRL 2011, M. Hofmann et al. JPA 2014



Semidefinite programming

minimize: c⃗T x⃗

subject to: F0 +
∑

i
xiFi ≥ 0

Here: x⃗ are variables, c⃗ coefficients, Fi matrices.

For SDPs, certified solutions can be found (duality).

In practice, one can solve them with few lines of code (Mosek).

SDP in QIT

Given an observable W , what is the maximal Tr(ϱW ) for ϱ PPT?

Given marginals ϱAB and ϱBC , is there a global ϱABC with these
marginals? Both SDPs!

Given marginals ϱAB and ϱBC , is there a pure |ψ⟩ABC with these
marginals? No SDP!
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The resulting method

Classification via witnesses

A state ϱ is not a PPT mixture, if and only if Tr(ϱW) < 0 for

W = PA + QTA

A = PB + QTB

B = PC + QTC

C

with Pi ,Qi ≥ 0.

Main advantages

This can be solved via semidefinite programming.

In practice, it requires only few lines of code in Mathematica

Numerically, it works for ≤ 7 qubits. Analytically, up to “∞” qubits.

The amount of the violation is an entanglement monotone.
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Results

Noise robustness

The noise robustness increases
drastically: Consider

ϱ(p) = p1/8 + (1− p)|ψ⟩⟨ψ|

and compute maximal ptol :
state tolerances ptol

new before
|GHZ3⟩⋆ 0.571 0.571
|GHZ4⟩⋆ 0.533 0.533
|W3⟩⋆ 0.521 0.421
|W4⟩ 0.526 0.444
|Cl4⟩⋆ 0.615 0.533
|D2,4⟩ 0.539 0.381
|ΨS,4⟩ 0.553 0.317

B. Jungnitsch et al., PRL 106, 190502 (2011).

Permutation invariant states

For PI states of three qubits

ϱ = πijϱπij

the PPT mixer is necessary and
sufficient for entanglement.
L.Novo et al., PRA 2013

Extensions

Similar criteria for multiparticle
entanglement based on other bi-
partite criteria, such as the com-
putable cross norm / realignment
criterion.
C. Zhang, S. Denker et al., PRL 2024
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entanglement based on other bi-
partite criteria, such as the com-
putable cross norm / realignment
criterion.
C. Zhang, S. Denker et al., PRL 2024
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Superactivation

Two broken quantum channels may be useful!

G. Smith and J. Yard, Science 2008

Two local quantum states can be nonlocal!
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Superactivation of GME

Tensor stability

Does a property of ϱ hold for the two-copy state ϱ⊗2, too?

Bipartite separability: ϱAB separable ⇒ ϱ⊗2
AB separable

PPT: ϱAB is PPT ⇒ ϱ⊗2
AB is PPT.

But: TS criteria don’t detect much entanglement in high dim.

There are PPT entangled states far away from the separable states, S. Beigi, P. W. Shor, JMP 51, 042202 2010.

Is biseparability tensor stable?

For a biseparable state

ϱ = p1ϱAB ⊗ ϱC + p2σA ⊗ σBC + p3τB ⊗ τAB

the two-copy state ϱ⊗2 contains cross terms and is not clearly biseparable.
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Superactivation of GME

GME can be superactivated.

Any state that is not separable for a fixed partition becomes GME
for many copies.

What does this mean for multiparticle entanglement as a resource?

H. Yamasaki et al., Quantum 6, 695 (2022); C. Palazuelos et al., Quantum 6, 735 (2022); L. Weinbrenner et al.,

arXiv:2412.18331.



Network Entanglement



Quantum networks

Many people dream of global quantum communication

J. Rabbie et al., Nature QI 2022; J. Yin et al., Nature 2020.



Quantum networks

Many people dream of global quantum communication

J. Rabbie et al., Nature QI 2022; J. Yin et al., Nature 2020.



Theorist’s perspective

Network of quantum nodes with physical links.

Entanglement is created along the links with some imperfections.

Which types of quantum correlations arise in this network?

Networks also provide a paradigm to study quantum nonlocality.

C. Branciard et al., PRA 2012, N. Gisin et al., Nature Comm. 2020, A. Tavakoli et al., arXiv:2104.10700



Basic idea

Consider a multipartite scenario. If a state can be generated by distributing
two-particle source states only, then it is not multiparticle entangled.

Problem

If LOCC are allowed, then any state can be prepared via teleportation.

⇒ One has to restrict the available local operations.
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Network entanglement

LOSR paradigm

Can a state be prepared using local operations & shared randomness?

Formally: Can the quantum state be written as:

ϱ
?
=

∑
λ

pλE (λ)
A ⊗ E (λ)

B ⊗ E (λ)
C [ϱa ⊗ ϱb ⊗ ϱc ]

M. Navascues et al, PRL 2020; M. X. Luo, Adv. Quantum Tech. 2021; T. Kraft et al, PRA 2021
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Network entanglement

ϱ
?
=

∑
λ

pλE (λ)
A ⊗ E (λ)

B ⊗ E (λ)
C [ϱa ⊗ ϱb ⊗ ϱc ]

Remarks

The source states ϱx may be high-dimensional.

Randomness λ can be shifted from the maps to the source states.

No communication allowed (or possible)

This procedure can generate genuine multipartite entanglement.

K. Hansenne et al., Nature Comm. 2022
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Quantum inflation

Idea

If a state can be generated in a network, one can consider multiple copies
of the sources, which may be wired differently.

E. Wolfe et al., PRX 2021; M. Navascues et al., PRL 2020, L. Ligthart et al., CMP 2023



Quantum inflation

Properties

The inflations share some marginals, e.g.,

τABC = τA′B′C ′ = ϱ, γA′C = τAC = ϱAC , γAC = τA′C

The search for γ and τ with such properties is an SDP, can be
tackled analytically or numerically.

We obtain fidelity bounds

FGHZ ≤ 0.618, FCL ≤ 0.7377.

M. Navascues et al, PRL 2020, K. Hansenne et al., Nat. Comm. 2022



Generalizations

Observations

These methods are difficult to extend to many particles.

One would expect: If large quantum states are considered, fidelity
bounds go exponentially down.

Idea

If a multi-qubit state can be prepared, this may imply that GHZ states can
be prepared in triangle scenarios.
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Results

No graph state can be prepared better than the GHZ in the triangle.(b) GHZ fidelity (Results 1, 2, 5) (c) Graph states (Results 3, 4)
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Conclusion

There are different and inequivalent measures of multiparticle
entanglement.

GME can be characterized by generalizations of the PPT criterion.

GME can be superactivated.

Networks pose interesting problems for characterizing correlations.
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