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General Structure

1 Lecture I: Pure states

2 Lecture II: Mixed states

3 Lecture III: Graph states and other families of states



Schedule for Lecture III

1 Graph states

2 Network entanglement

3 Hypergraph states



Graph states



What are the interesting multiqubit states?

The GHZ states violate Bell inequalities maximally:

|GHZ ⟩ = |0000⟩+ |1111⟩

The W-states are robust against qubit loss:

|W ⟩ = |1000⟩+ |0100⟩+ |0010⟩+ |0001⟩

The cluster states are useful for the one-way quantum computer:

|CL⟩ = |0000⟩+ |1100⟩+ |0011⟩ − |1111⟩

The Dicke states are often easy to prepare:

|D⟩ = |0011⟩+ |0101⟩+ |1001⟩+ |0110⟩+ |1010⟩+ |1100⟩

The singlet states are U ⊗ ...⊗ U invariant:

|ψ(4)⟩ = |0011⟩+ |1100⟩ − 1

2
(|10⟩+ |10⟩)⊗ (|10⟩+ |10⟩)



Motivation

The GHZ state |GHZ ⟩ = |000⟩+ |111⟩ is an eigenstate of

111 |ZZ1, Z1Z , XXX |1ZZ , −YYX , −YXY , −XYY

Can this be generalized?

Facts

These are 23 = 8 commuting observables, forming a group.

Group is generated by Z1Z ,ZZ1,XXX , also by YYX ,YXY ,XYY .

These observables were useful for deriving Bell inequalities.
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Graph states as stabilizer states

For any graph, define stabilizing operators as

gi = Xi

⊗
j∈N(i)

Zj .

These commute, have eigenvalues ±1 and a common eigenbasis.

The graph state |G ⟩ is the unique state fulfilling

gi |G ⟩ = |G ⟩.

M. Hein, J. Eisert, H.J. Briegel, PRA 69, 062311 (2004)
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Example

These two graphs lead to the generators

XZ1, ZXZ , 1ZX or XZZ , ZXZ , ZZX

Up to some relabeling, these are the generating sets from above.

⇒ The GHZ state is a graph state, with two potential graphs.
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Graph states

(1) Start with N qubits in the state

|+⟩ = (|0⟩+ |1⟩)
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(2) Apply on the edges a phase gate:

Ce = 1− 2|11⟩⟨11|

This is an Ising-type interaction.



Graph states

(1) Start with N qubits in the state

|+⟩ = (|0⟩+ |1⟩)

(2) Apply on the edges a phase gate:

Ce = 1− 2|11⟩⟨11|

This is an Ising-type interaction.

(3) Resulting state is the graph state.

M. Hein, J. Eisert, H.J. Briegel, PRA 69, 062311 (2004).



Graph states

Technical points

Since phase gates commute, one may also write

|G ⟩ =
∏

e∈E
Ce |+⟩⊗N

To see the equivalence of the definitions, note that

X1Z2 = C{1,2}X1C{1,2}

Further examples

General GHZ states, 1D and 2D cluster states,
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Application: Measurement-based quantum computation

By making local measurement on a cluster state, a quantum
computer can be realized.

Problem: Experimental generation of the cluster state.

R. Raussendorf, H. Briegel, PRL 86, 5188 (2001).



Further applications

All code words in quantum error correcting codes correspond to
graph states.

D. Schlingemann and R.F. Werner, PRA 65, 012308 (2002).

GHZ-type arguments and Bell inequalities can be derived for
arbitrary graph states.

O. Gühne et al., PRL 95, 120405 (2005).

Other potential applications: Secret sharing, multiparty quantum
cryptography, quantum metrology, ...



Local equivalences: LU, LC

Local Clifford unitaries map Pauli matrices to Pauli matrices.

Action of LC can be described by local complementation:

M. van den Nest et al., PRA 69, 022316 (2004).

This leads to a classification of N ≤ 11 qubits.

But: For N = 27 there are LU equivalent graph states that are not
LC equivalent.
Z. Ji et al., QIC 10, 97 (2010), N. Tsimakuridze, O. Gühne, J. Phys. A 2017
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Stabilizer

The products of the gi form the commutative stabilizer

S(G ) = {sj , j = 1, ..., 2N}; sj =
∏
i∈Ij

gi

D. Gottesman, Phys. Rev. A 54, 1862 (1996).

Any commutative subgroup of the Pauli group with 2N elements
can be represented by a graph (up to local Clifford).

M. Hein, J. Eisert, H.J. Briegel, PRA 69, 062311 (2004).

Considering the other eigenvalues gives the graph state basis,

gi |Gr⃗ ⟩ = (−1)ri |Gr⃗ ⟩.

A very useful formula:

|G ⟩⟨G | =
∏N

i=1

1+ gi
2

=
1

2N

∑2N

j=1
sj .
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Depolarization

Given a state ϱ, what is

σ =
1

2N

∑
i
siϱsi?

This can also obtained as

ϱ 7→ τ1 =
1

2
(ϱ+ g1ϱg1) 7→ τ2 =

1

2
(τ1 + g2τg2) 7→ · · · 7→ σ.

Properties

This is a sequence of LOCC, entanglement decays.

If σ is entangled, then ϱ was also entangled.

If we write ϱ =
∑

ij αij |Gi ⟩⟨Gj | in the graph-state basis

ϱ 7→ σ =
∑

i
αi |Gi ⟩⟨Gi |

⇒ Graph-diagonal states are interesting!
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GHZ-diagonal states

For three-qubits, one can consider the GHZ basis,

|000⟩ ± |111⟩, |001⟩ ± |110⟩, |010⟩ ± |101⟩, |100⟩ ± |011⟩

The GHZ-diagonal states are of X -form:

ϱ =



λ1 . . . . . . µ1
λ2 µ2

λ3 µ3
λ4 µ4
µ4 λ4

µ3 λ3
µ2 λ2

µ1 . . . . . . λ1


For these states, many things have been solved.
Depolarization to GHZ-diagonal states is useful also for experimental data.

W. Dür et al., JPA 2001, O. Gühne et al., NJP 2010; Z.H. Ma et al., PRA 2011; S. M. Hashemi Rafsanjani et al.,

PRA 2012; C. Eltschka et al, PRL 2012
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Network Entanglement



Quantum networks

Many people dream of global quantum communication

J. Rabbie et al., Nature QI 2022; J. Yin et al., Nature 2020.
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J. Rabbie et al., Nature QI 2022; J. Yin et al., Nature 2020.



Theorist’s perspective

Network of quantum nodes with physical links.

Entanglement is created along the links with some imperfections.

Which types of quantum correlations arise in this network?

Networks also provide a paradigm to study quantum nonlocality.

C. Branciard et al., PRA 2012, N. Gisin et al., Nature Comm. 2020, A. Tavakoli et al., arXiv:2104.10700



Basic idea

Consider a multipartite scenario. If a state can be generated by distributing
two-particle source states only, then it is not multiparticle entangled.

Problem

If LOCC are allowed, then any state can be prepared via teleportation.

⇒ One has to restrict the available local operations.
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Network entanglement

LOSR paradigm

Can a state be prepared using local operations & shared randomness?

Formally: Can the quantum state be written as:

ϱ
?
=

∑
λ

pλE (λ)
A ⊗ E (λ)

B ⊗ E (λ)
C [ϱa ⊗ ϱb ⊗ ϱc ]

M. Navascues et al, PRL 2020; M. X. Luo, Adv. Quantum Tech. 2021; T. Kraft et al, PRA 2021
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Network entanglement

ϱ
?
=

∑
λ

pλE (λ)
A ⊗ E (λ)

B ⊗ E (λ)
C [ϱa ⊗ ϱb ⊗ ϱc ]

Remarks

The source states ϱx may be high-dimensional.

Randomness λ can be shifted from the maps to the source states.

No communication allowed (or possible)

This procedure can generate genuine multipartite entanglement.

K. Hansenne et al., Nature Comm. 2022



Network entanglement

ϱ
?
=

∑
λ

pλE (λ)
A ⊗ E (λ)

B ⊗ E (λ)
C [ϱa ⊗ ϱb ⊗ ϱc ]

Remarks

The source states ϱx may be high-dimensional.

Randomness λ can be shifted from the maps to the source states.

No communication allowed (or possible)

This procedure can generate genuine multipartite entanglement.

K. Hansenne et al., Nature Comm. 2022



Quantum inflation

Idea

If a state can be generated in a network, one can consider multiple copies
of the sources, which may be wired differently.

E. Wolfe et al., PRX 2021; M. Navascues et al., PRL 2020, L. Ligthart et al., CMP 2023



Quantum inflation

Properties

The inflations share some marginals, e.g.,

τABC = τA′B′C ′ = ϱ, γA′C = τAC = ϱAC , γAC = τA′C

The search for γ and τ with such properties is an SDP, can be
tackled analytically or numerically.

We obtain fidelity bounds

FGHZ ≤ 0.618, FCL ≤ 0.7377.

M. Navascues et al, PRL 2020, K. Hansenne et al., Nat. Comm. 2022



Generalizations

Observations

These methods are difficult to extend to many particles.

One would expect: If large quantum states are considered, fidelity
bounds go exponentially down.

Idea

If a multi-qubit state can be prepared, this may imply that GHZ states can
be prepared in triangle scenarios.
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Results

No graph state can be prepared better than the GHZ in the triangle.(b) GHZ fidelity (Results 1, 2, 5) (c) Graph states (Results 3, 4)
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(a) Networks
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...100110...

LOSR LOCC

J. Neumann et al., arXiv:2503.09473
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Hypergraph states



Basic definitions

In a hypergraph, edges can contain more than two vertices.

The controlled phase gate on an edge e is given by

Ce = 1− 2|1 · · · 1⟩⟨1 · · · 1|

The hypergraph state is:

|H⟩ =
∏
e∈E

Ce |+⟩⊗N

C. Kruszynska, B. Kraus. PRA 79, 052304 (2009), M. Rossi, M. Huber, D. Bruß,C. Macchiavello, NJP 15 (2013).
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The nonlocal stabilizer

Define for each qubit the operator

gi ≡
( ∏
e∈E

Ce

)
Xi

( ∏
e∈E

Ce

)
= Xi ⊗

(∏
e∋i

Ce\{i}
)

Then:
gi |H⟩ = |H⟩ for all i

The stabilizing operators gi :

... are hermitean, but nonlocal,

... commute: gigj = gjgi ,

... generate a group with 2N elements.
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Examples

The three-qubit HG state

For the simplest nontrivial HG we have

|H3⟩ =
1√
8
(|000⟩+ |001⟩+ |010⟩+ |011⟩+ |100⟩+ |101⟩+ |110⟩ − |111⟩)

after Hadamard transformation on the third qubit:

|H3⟩ =
1

2
(|000⟩+ |010⟩+ |100⟩+ |111⟩).

This state was also called “logical AND state”.

S. Abramsky, C. Costantin, arXiv:1412.5213



HG states as a tool

Local operations

For HG states, one can derive graphical rules for some transformations

LU equivalence

Using these rules: HG states can be LU equivalent to graph states

N. Tsimakuridze, O. Gühne, J. Phys. A 2017
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Bell inequalities for hypergraph states

First Problem

Can the non-local stabilizer be used for characterizing local correlations?

The state |H3⟩ is a +1 eigenstate of

g1 = X1 ⊗ C23 = X1 ⊗ (|00⟩⟨00|+ |01⟩⟨01|+ |10⟩⟨10| − |11⟩⟨11|)

So we have
P(+−−|XZZ ) = 0.

Furthermore:

P(−++|XZZ ) + P(−+−|XZZ ) + P(−−+|XZZ ) = 0,

⇒ The non-local stabilizer predicts some local perfect correlations!
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Hardy argument

If a LHV model satisfies the conditions from zero correlations from the
state |H3⟩ then it must fulfill

P(+−−|XXX ) + P(−+−|XXX ) + P(−−+|XXX ) = 0.

In contrast, for |H3⟩ we have

P(+−−|XXX ) =
1

16

This argument can be generalized to N qubits.

. . .

N qubits
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Conclusion

Graph states are a useful family of quantum states with a very
elegant description.

Networks pose interesting problems for characterizing correlations.

Hypergraph states are a natural extension of graph states
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