Multiparticle Quantum Entanglement III

Otfried Gühne

General Structure

- Lecture I: Pure states
- 2 Lecture II: Mixed states
- Secture III: Graph states and other families of states

Schedule for Lecture III

- Graph states
- Network entanglement
- Hypergraph states

What are the interesting multiqubit states?

• The GHZ states violate Bell inequalities maximally:

$$|\mathit{GHZ}\rangle = |0000\rangle + |1111\rangle$$

• The W-states are robust against qubit loss:

$$|\mathit{W}\rangle = |1000\rangle + |0100\rangle + |0010\rangle + |0001\rangle$$

• The cluster states are useful for the one-way quantum computer:

$$|\mathit{CL}\rangle = |0000\rangle + |1100\rangle + |0011\rangle - |1111\rangle$$

• The Dicke states are often easy to prepare:

$$|D
angle=|0011
angle+|0101
angle+|1001
angle+|0110
angle+|1010
angle+|1100
angle$$

• The singlet states are $U \otimes ... \otimes U$ invariant:

$$|\psi^{(4)}\rangle = |0011\rangle + |1100\rangle - \frac{1}{2}(|10\rangle + |10\rangle) \otimes (|10\rangle + |10\rangle)$$

Motivation

The GHZ state $|\textit{GHZ}\rangle = |000\rangle + |111\rangle$ is an eigenstate of

$$111 \mid ZZ1, Z1Z, XXX \mid 1ZZ, -YYX, -YXY, -XYY$$

Can this be generalized?

Motivation

The GHZ state $|\mathit{GHZ}\rangle = |000\rangle + |111\rangle$ is an eigenstate of

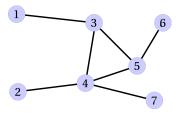
$$111 | ZZ1, Z1Z, XXX | 1ZZ, -YYX, -YXY, -XYY$$

Can this be generalized?

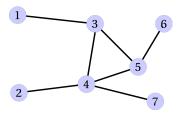
Facts

- ullet These are $2^3=8$ commuting observables, forming a group.
- Group is generated by Z1Z, ZZ1, XXX, also by YYX, YXY, XYY.
- These observables were useful for deriving Bell inequalities.

Graph states as stabilizer states



Graph states as stabilizer states

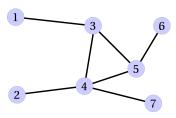


For any graph, define stabilizing operators as

$$g_i = X_i \bigotimes_{j \in N(i)} Z_j.$$

These commute, have eigenvalues ± 1 and a common eigenbasis.

Graph states as stabilizer states



For any graph, define stabilizing operators as

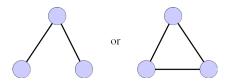
$$g_i = X_i \bigotimes_{j \in N(i)} Z_j$$
.

These commute, have eigenvalues ± 1 and a common eigenbasis.

• The graph state $|G\rangle$ is the unique state fulfilling

$$g_i|G\rangle=|G\rangle.$$

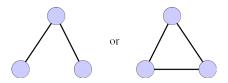
Example



• These two graphs lead to the generators

$$XZ1,\,ZXZ,\,11ZX\quad\text{or}\quad XZZ,\,ZXZ,\,ZZX$$

Example



• These two graphs lead to the generators

$$XZ1$$
, ZXZ , $1ZX$ or XZZ , ZXZ , ZZX

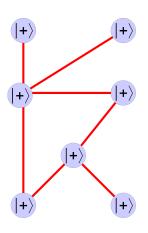
- Up to some relabeling, these are the generating sets from above.
- ullet \Rightarrow The GHZ state is a graph state, with two potential graphs.

 $\langle |+\rangle$

$$|+\rangle$$

(1) Start with N qubits in the state

$$|+\rangle = (|0\rangle + |1\rangle)$$



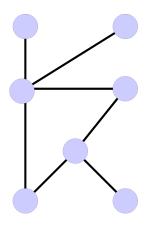
(1) Start with N qubits in the state

$$|+\rangle = (|0\rangle + |1\rangle)$$

(2) Apply on the edges a phase gate:

$$C_e = \mathbb{1} - 2|11\rangle\langle 11|$$

This is an Ising-type interaction.



(1) Start with N qubits in the state

$$|+\rangle = (|0\rangle + |1\rangle)$$

(2) Apply on the edges a phase gate:

$$C_e = 1 - 2|11\rangle\langle 11|$$

This is an Ising-type interaction.

(3) Resulting state is the graph state.

M. Hein, J. Eisert, H.J. Briegel, PRA 69, 062311 (2004).

Technical points

• Since phase gates commute, one may also write

$$|G\rangle = \prod_{e \in E} C_e |+\rangle^{\otimes N}$$

• To see the equivalence of the definitions, note that

$$X_1Z_2 = C_{\{1,2\}}X_1C_{\{1,2\}}$$

Technical points

Since phase gates commute, one may also write

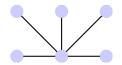
$$|G\rangle = \prod_{e \in F} C_e |+\rangle^{\otimes N}$$

• To see the equivalence of the definitions, note that

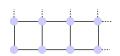
$$X_1Z_2 = C_{\{1,2\}}X_1C_{\{1,2\}}$$

Further examples

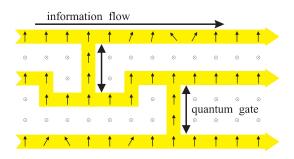
General GHZ states, 1D and 2D cluster states,







Application: Measurement-based quantum computation



- By making local measurement on a cluster state, a quantum computer can be realized.
- Problem: Experimental generation of the cluster state.

R. Raussendorf, H. Briegel, PRL 86, 5188 (2001).

Further applications

- All code words in quantum error correcting codes correspond to graph states.
 - D. Schlingemann and R.F. Werner, PRA 65, 012308 (2002).
- GHZ-type arguments and Bell inequalities can be derived for arbitrary graph states.
 - O. Gühne et al., PRL 95, 120405 (2005).
- Other potential applications: Secret sharing, multiparty quantum cryptography, quantum metrology, ...

Local equivalences: LU, LC

- Local Clifford unitaries map Pauli matrices to Pauli matrices.
- Action of LC can be described by local complementation:

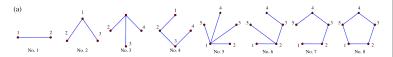
M. van den Nest et al., PRA 69, 022316 (2004).

Local equivalences: LU, LC

- Local Clifford unitaries map Pauli matrices to Pauli matrices.
- Action of LC can be described by local complementation:

M. van den Nest et al., PRA 69, 022316 (2004).

• This leads to a classification of $N \le 11$ qubits.

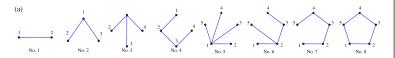


Local equivalences: LU, LC

- Local Clifford unitaries map Pauli matrices to Pauli matrices.
- Action of LC can be described by local complementation:

M. van den Nest et al., PRA 69, 022316 (2004).

• This leads to a classification of $N \le 11$ qubits.



 But: For N = 27 there are LU equivalent graph states that are not LC equivalent.

Z. Ji et al., QIC 10, 97 (2010), N. Tsimakuridze, O. Gühne, J. Phys. A 2017

Stabilizer

• The products of the g_i form the commutative stabilizer

$$S(G) = \{s_j, j = 1, ..., 2^N\}; \quad s_j = \prod_{i \in I_j} g_i$$

D. Gottesman, Phys. Rev. A 54, 1862 (1996).

• Any commutative subgroup of the Pauli group with 2^N elements can be represented by a graph (up to local Clifford).

M. Hein, J. Eisert, H.J. Briegel, PRA 69, 062311 (2004).

Stabilizer

• The products of the g_i form the commutative stabilizer

$$S(G) = \{s_j, j = 1, ..., 2^N\}; \quad s_j = \prod_{i \in I_j} g_i$$

D. Gottesman, Phys. Rev. A 54, 1862 (1996).

• Any commutative subgroup of the Pauli group with 2^N elements can be represented by a graph (up to local Clifford).

M. Hein, J. Eisert, H.J. Briegel, PRA 69, 062311 (2004).

Considering the other eigenvalues gives the graph state basis,

$$g_i|G_{\vec{r}}\rangle=(-1)^{r_i}|G_{\vec{r}}\rangle.$$

A very useful formula:

$$|G\rangle\langle G| = \prod_{i=1}^{N} \frac{1+g_i}{2} = \frac{1}{2^N} \sum_{j=1}^{2^N} s_j.$$

Depolarization

Given a state ρ , what is

$$\sigma = \frac{1}{2^N} \sum_{i} s_i \varrho s_i?$$

This can also obtained as

$$\varrho\mapsto au_1=rac{1}{2}(arrho+g_1arrho g_1)\mapsto au_2=rac{1}{2}(au_1+g_2 au g_2)\mapsto\cdots\mapsto\sigma.$$

Depolarization

Given a state ϱ , what is

$$\sigma = \frac{1}{2^N} \sum_{i} s_i \varrho s_i?$$

This can also obtained as

$$arrho\mapsto au_1=rac{1}{2}(arrho+g_1arrho g_1)\mapsto au_2=rac{1}{2}(au_1+g_2 au g_2)\mapsto\cdots\mapsto\sigma.$$

Properties

- This is a sequence of LOCC, entanglement decays.
- If σ is entangled, then ϱ was also entangled.

Depolarization

Given a state ϱ , what is

$$\sigma = \frac{1}{2^N} \sum_{i} s_i \varrho s_i?$$

This can also obtained as

$$\varrho\mapsto au_1=rac{1}{2}(arrho+g_1arrho g_1)\mapsto au_2=rac{1}{2}(au_1+g_2 au g_2)\mapsto\cdots\mapsto\sigma.$$

Properties

- This is a sequence of LOCC, entanglement decays.
- If σ is entangled, then ϱ was also entangled.
- If we write $\varrho = \sum_{ij} \alpha_{ij} |G_i\rangle \langle G_j|$ in the graph-state basis

$$\varrho \mapsto \sigma = \sum_{i} \alpha_{i} |G_{i}\rangle\langle G_{i}|$$

⇒ Graph-diagonal states are interesting!

GHZ-diagonal states

For three-qubits, one can consider the GHZ basis,

$$|000\rangle \pm |111\rangle, \quad |001\rangle \pm |110\rangle, \quad |010\rangle \pm |101\rangle, \quad |100\rangle \pm |011\rangle$$

GHZ-diagonal states

For three-qubits, one can consider the GHZ basis,

$$|000\rangle \pm |111\rangle, \quad |001\rangle \pm |110\rangle, \quad |010\rangle \pm |101\rangle, \quad |100\rangle \pm |011\rangle$$

The GHZ-diagonal states are of X-form:

$$\varrho = \begin{bmatrix} \lambda_1 & & \dots & \dots & & & \mu_1 \\ & \lambda_2 & & & & & \mu_2 \\ & & \lambda_3 & & & \mu_3 & & \\ & & \lambda_4 & \mu_4 & & & \\ & & & \mu_4 & \lambda_4 & & \\ & & & \mu_3 & & & \lambda_3 & \\ & & \mu_2 & & & & \lambda_1 \end{bmatrix}$$

GHZ-diagonal states

For three-qubits, one can consider the GHZ basis,

$$|000\rangle \pm |111\rangle, \quad |001\rangle \pm |110\rangle, \quad |010\rangle \pm |101\rangle, \quad |100\rangle \pm |011\rangle$$

The GHZ-diagonal states are of X-form:

$$\varrho = \begin{bmatrix} \lambda_1 & & \dots & \dots & & & \mu_1 \\ & \lambda_2 & & & & \mu_2 & \\ & & \lambda_3 & & & \mu_3 & & \\ & & & \lambda_4 & \mu_4 & & & \\ & & & \mu_4 & \lambda_4 & & & \\ & & & \mu_3 & & & \lambda_3 & & \\ & & \mu_2 & & & & \lambda_2 & \\ \mu_1 & & & \dots & \dots & & & \lambda_1 \end{bmatrix}$$

For these states, many things have been solved. Depolarization to GHZ-diagonal states is useful also for experimental data.

W. Dür et al., JPA 2001, O. Gühne et al., NJP 2010; Z.H. Ma et al., PRA 2011; S. M. Hashemi Rafsanjani et al., PRA 2012; C. Eltschka et al. PRL 2012

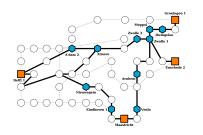
Network Entanglement

Quantum networks

Many people dream of global quantum communication

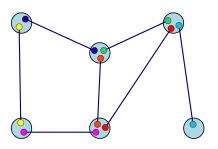
Quantum networks

Many people dream of global quantum communication



J. Rabbie et al., Nature QI 2022; J. Yin et al., Nature 2020.

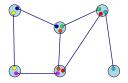
Theorist's perspective



- Network of quantum nodes with physical links.
- Entanglement is created along the links with some imperfections.
- Which types of quantum correlations arise in this network?
- Networks also provide a paradigm to study quantum nonlocality.

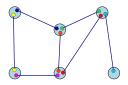
Basic idea

Consider a multipartite scenario. If a state can be generated by distributing two-particle source states only, then it is not multiparticle entangled.



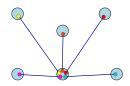
Basic idea

Consider a multipartite scenario. If a state can be generated by distributing two-particle source states only, then it is not multiparticle entangled.



Problem

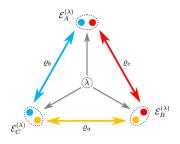
If LOCC are allowed, then any state can be prepared via teleportation.



⇒ One has to restrict the available local operations.

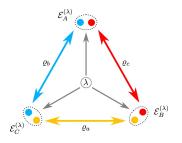
LOSR paradigm

Can a state be prepared using local operations & shared randomness?



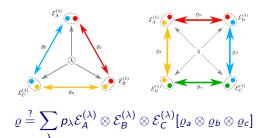
LOSR paradigm

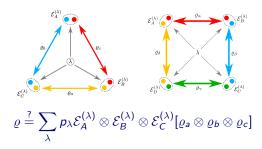
Can a state be prepared using local operations & shared randomness?



Formally: Can the quantum state be written as:

$$\varrho \stackrel{?}{=} \sum_{\lambda} p_{\lambda} \mathcal{E}_{A}^{(\lambda)} \otimes \mathcal{E}_{B}^{(\lambda)} \otimes \mathcal{E}_{C}^{(\lambda)} [\varrho_{a} \otimes \varrho_{b} \otimes \varrho_{c}]$$





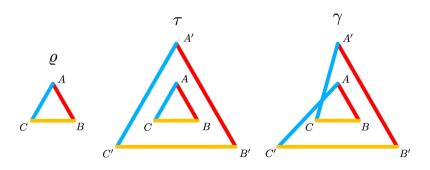
Remarks

- The source states ϱ_x may be high-dimensional.
- ullet Randomness λ can be shifted from the maps to the source states.
- No communication allowed (or possible)
- This procedure can generate genuine multipartite entanglement.

Quantum inflation

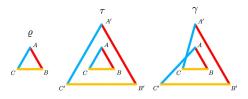
Idea

If a state can be generated in a network, one can consider multiple copies of the sources, which may be wired differently.



E. Wolfe et al., PRX 2021; M. Navascues et al., PRL 2020, L. Ligthart et al., CMP 2023

Quantum inflation



Properties

The inflations share some marginals, e.g.,

$$au_{ABC} = au_{A'B'C'} = \varrho, \quad \gamma_{A'C} = au_{AC} = \varrho_{AC}, \quad \gamma_{AC} = au_{A'C}$$

- The search for γ and τ with such properties is an SDP, can be tackled analytically or numerically.
- We obtain fidelity bounds

$$F_{GHZ} \leq 0.618, \quad F_{CL} \leq 0.7377.$$

Generalizations

Observations

- These methods are difficult to extend to many particles.
- One would expect: If large quantum states are considered, fidelity bounds go exponentially down.

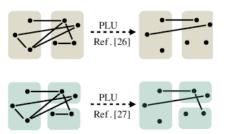
Generalizations

Observations

- These methods are difficult to extend to many particles.
- One would expect: If large quantum states are considered, fidelity bounds go exponentially down.

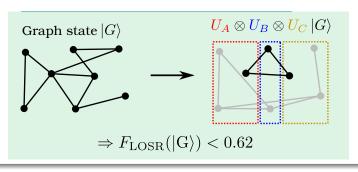
Idea

If a multi-qubit state can be prepared, this may imply that GHZ states can be prepared in triangle scenarios.



Results

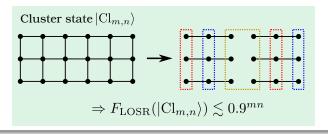
• No graph state can be prepared better than the GHZ in the triangle.



J. Neumann et al., arXiv:2503.09473

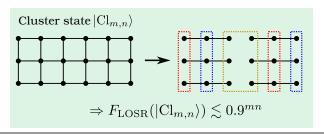
Results

• Cluster states and other families are exponentially hard to prepare.



Results

• Cluster states and other families are exponentially hard to prepare.

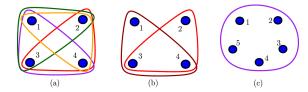


Main message

- There is a fundamental difference between distributed bipartite entanglement and multiparticle entanglement.
- Communication and quantum memories are essential for networks.

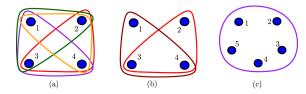
Hypergraph states

Basic definitions



In a hypergraph, edges can contain more than two vertices.

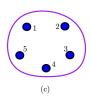
Basic definitions



In a hypergraph, edges can contain more than two vertices. The controlled phase gate on an edge $\it e$ is given by

$$C_e = \mathbb{1} - 2|1\cdots 1\rangle\langle 1\cdots 1|$$

Basic definitions



In a hypergraph, edges can contain more than two vertices. The controlled phase gate on an edge e is given by

$$C_e = \mathbb{1} - 2|1\cdots 1\rangle\langle 1\cdots 1|$$

The hypergraph state is:

$$|H\rangle = \prod_{e \in E} C_e |+\rangle^{\otimes N}$$

C. Kruszynska, B. Kraus. PRA 79, 052304 (2009), M. Rossi, M. Huber, D. Bruß, C. Macchiavello, NJP 15 (2013).

The nonlocal stabilizer

Define for each qubit the operator

$$g_i \equiv \big(\prod_{e \in E} C_e\big) X_i \big(\prod_{e \in E} C_e\big) = X_i \otimes \big(\prod_{e \ni i} C_{e \setminus \{i\}}\big)$$

Then:

$$g_i|H\rangle=|H\rangle$$
 for all i

The nonlocal stabilizer

Define for each qubit the operator

$$g_i \equiv \big(\prod_{e \in E} C_e\big) X_i \big(\prod_{e \in E} C_e\big) = X_i \otimes \big(\prod_{e \ni i} C_{e \setminus \{i\}}\big)$$

Then:

$$g_i|H\rangle = |H\rangle$$
 for all i

The stabilizing operators g_i :

- ... are hermitean, but nonlocal,
- ... commute: $g_ig_j = g_jg_i$,
- ... generate a group with 2^N elements.

Examples

The three-qubit HG state

For the simplest nontrivial HG we have

$$|H_3\rangle = \frac{1}{\sqrt{8}}(|000\rangle + |001\rangle + |010\rangle + |011\rangle + |100\rangle + |101\rangle + |111\rangle)$$

after Hadamard transformation on the third qubit:

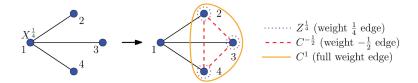
$$|H_3\rangle = \frac{1}{2}(|000\rangle + |010\rangle + |100\rangle + |111\rangle).$$

This state was also called "logical AND state".

S. Abramsky, C. Costantin, arXiv:1412.5213

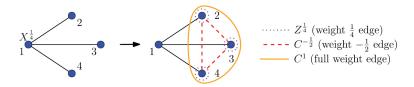
Local operations

For HG states, one can derive graphical rules for some transformations



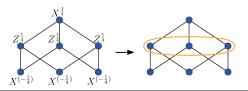
Local operations

For HG states, one can derive graphical rules for some transformations



LU equivalence

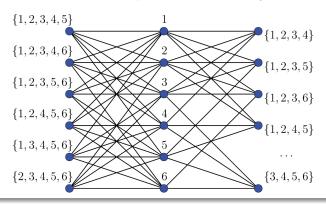
Using these rules: HG states can be LU equivalent to graph states



N. Tsimakuridze, O. Gühne, J. Phys. A 2017

LU equivalence

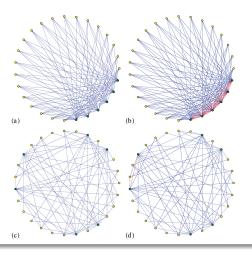
This allows to find counterexamples to the LU-LC conjecture.



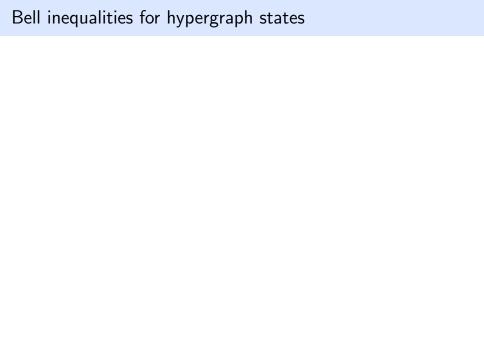
N. Tsimakuridze, O. Gühne, J. Phys. A 2017

LU equivalence

This allows to find counterexamples to the LU-LC conjecture.



N. Tsimakuridze, O. Gühne, J. Phys. A 2017



Bell inequalities for hypergraph states

First Problem

 $Can \ the \ non-local \ stabilizer \ be \ used \ for \ characterizing \ local \ correlations?$

Bell inequalities for hypergraph states

First Problem

Can the non-local stabilizer be used for characterizing local correlations?

• The state $|H_3\rangle$ is a +1 eigenstate of

$$g_1 = X_1 \otimes \textit{C}_{23} = X_1 \otimes \left(|00\rangle\langle 00| + |01\rangle\langle 01| + |10\rangle\langle 10| - |11\rangle\langle 11| \right)$$

Bell inequalities for hypergraph states

First Problem

Can the non-local stabilizer be used for characterizing local correlations?

• The state $|H_3\rangle$ is a +1 eigenstate of

$$g_1 = X_1 \otimes \textit{C}_{23} = X_1 \otimes \left(|00\rangle\langle 00| + |01\rangle\langle 01| + |10\rangle\langle 10| - |11\rangle\langle 11| \right)$$

So we have

$$P(+--|XZZ)=0.$$

• Furthermore:

$$P(-++|XZZ) + P(-+-|XZZ) + P(--+|XZZ) = 0,$$

⇒ The non-local stabilizer predicts some local perfect correlations!

Hardy argument

If a LHV model satisfies the conditions from zero correlations from the state $|H_3\rangle$ then it must fulfill

$$P(+--|XXX) + P(-+-|XXX) + P(--+|XXX) = 0.$$

Hardy argument

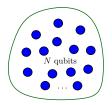
If a LHV model satisfies the conditions from zero correlations from the state $|H_3\rangle$ then it must fulfill

$$P(+--|XXX) + P(-+-|XXX) + P(--+|XXX) = 0.$$

In contrast, for $|H_3\rangle$ we have

$$P(+--|XXX)=\frac{1}{16}$$

This argument can be generalized to N qubits.



Conclusion

- Graph states are a useful family of quantum states with a very elegant description.
- Networks pose interesting problems for characterizing correlations.
- Hypergraph states are a natural extension of graph states

Literature

- M. Hein et al., Entanglement in Graph States and its Applications, quant-ph/0602096.
- K. Hansenne, Z.P. Xu et al., Nature Comm. 13, 496 (2022); arXiv:2108.02732.
- M Gachechiladze et al., Phys. Rev. Lett. 116, 070401 (2016); arXiv:1507.03570.