### Quantum mechanical oscillator

$$X_{Lab}(t) = X \sin(\omega t) + P \cos(\omega t)$$

Dimensionless canonical variables

$$Var(X) Var(P) \ge 1/4$$

$$[X, P] = i$$

Oscillator energy 
$$E = \hbar\omega(n + \frac{1}{2}) = \frac{1}{2}m\omega^2x^2 = \frac{p^2}{2m}$$

Mode (1,1)

Zero-point fluctuations:  $n=0 \rightarrow E=\frac{1}{2}m\omega^2 x_{zpf}^2=\frac{1}{2}\hbar\omega$ 



$$x_{zpf} = \sqrt{\frac{\hbar}{m\omega}} \sim 1 fm$$

$$X = \frac{x}{x_{zpf}} \quad P = \frac{p}{\hbar} x_{zpf}$$

Dimensionless canonical variables<sup>n</sup>

 $m \approx 10 ng$ ;  $\omega \approx 2\pi \cdot 10^6 Hz$ 



### Oscillator Hamiltonian

$$H = \frac{p^2}{2m} + \frac{m\Omega_m^2 x^2}{2} = \frac{\hbar}{2}\Omega_m(P^2 + X^2)$$

n=3 — Phonon states 
$$n=2 - \frac{1}{n=1} \Omega_m$$

$$n=0 - \frac{1}{n=1} \Omega_m$$

$$X = \frac{x}{x_{zpf}}, P = px_{zpf}/\hbar$$

$$\chi_{zpf} = \sqrt{\frac{\hbar}{m\Omega_m}}$$
 Zero-point fluctuations

Example: m = 10 ng,  $\Omega_m = 2\pi \ 10^6 \ \to \ x_{zpf} = 10^{-15} {\rm m}$ 

### Thermal noise

$$n_{th} = \frac{k_B T}{\hbar \Omega_m}$$

n=3 — Phonon states
$$n=2 - \frac{1}{n=1} \Omega_{m}$$

$$n=0 - \frac{1}{n}$$

$$x_{th} = \sqrt{\frac{2n_{th}\hbar}{m\Omega_m}}$$
 Thermal fluctuations

Example: m = 10 ng,  $\Omega_m = 2\pi \ 10^6$   $T = 4K \rightarrow x_{th} \approx 10^{-12} \mathrm{m}$ 

### Optomechanical photon-phonon interaction



# Optomechanical interaction (Quantum NonDemolition)



$$H = gX_MX_L$$

 $\kappa$  – cavity bandwidth

$$\hat{P}_{L,\text{out}}^{M} = \hat{P}_{L,\text{in}}^{M} - \sqrt{\Gamma_{M}}\hat{X}_{M}$$

$$\Gamma_M = 2g^2/\kappa$$

$$g = \frac{\omega_{opt}}{L} \sqrt{\frac{\hbar n_{ph}}{m\Omega_m}}$$

Intracavity
Photon
number

### Mechanics (membrane) spectrum and quantum



### Quantum back action free measurement of motion

for microscopic oscillator



Image credit
Bastian Leonhardt Strube and Mads Vadsho

## Matching quantum back actions for hybrid mechanical – spin system

Matching "masses"
$$\kappa^2 \Gamma_S = \frac{4g^2}{\Gamma_c}$$

$$\kappa^2 \leftrightarrow \text{optical depth}$$

$$H_{spin} = \frac{\kappa}{\tau_n} X_{spin} x_{light}$$

$$H_{mech} = g x_{Mech} x_{light}$$

#### Cancellation of Quantum backaction noise in negative mass reference frame



 $P_{Lout} = P_{L,in} + force\ terms + \Gamma_{M} \chi_{M} X_{L1,in} + \Gamma_{S} \chi_{S} X_{L2,in}$ 

# Generation of entangled state of mechanical and spin oscillators

$$X(dt)_{X0} = X - X_0 + (P + P_0)dt$$
$$Var(X - X_0) + Var(P + P_0) \to 0$$

MSc degree from State University of Maringa, Brazil PhD at the Niels Bohr Institute

R. Thomas et al, **Nature Phys.** 17, 228–233(**2021**)

## Entanglement generation by continuous measurement (Wiener filtering)



$$X(t) - X_0(t) = [X(0) - X_0(0)] \cos(\omega t) + [P(0) + P_0(0)] \sin(\omega t)$$

 $\vec{x}(t)$ 

$$V_c = \langle R(t)^2 \rangle = \underbrace{\langle x(t)^2 \rangle}_{V_u} - \langle \vec{x}(t)^2 \rangle$$





### Quantum Sensing in Health Applications

Copenhagen Center for Biomedical Quantum Sensing





# Quantum Sensing The more qubits, The merrier! the merrier! Quantum

**Quantum Technology** 









**Sensors** 

balanced detector

# Sensing of electro-magnetic fields

Standard Quantum Limit similar to Heisenberg microscope

balance between Imprecision and Backaction

# Sensing beyond SQL enabled by entanglement



Minimal uncertainties for uncorrelated spins

$$\partial J_{z1,2}^2 = \partial J_{y1,2}^2 = \frac{1}{2}J_x \rightarrow \partial J_{y,z} \sim \sqrt{J_x} \sim \sqrt{N}$$

X

We measure magnetic fields 10<sup>11</sup> times weaker than Earth magnetic field

QND measurement. Entangled for 2 millisec. Nature, 413, 400 (2001)

Steady-state entanglement by dissipation+measurement. *PRL*, 107, 080503 (2011).





## Atomic Spin magnetometry for **Noninvasive cardiac diagnostic**



Scientific Reports (2018)

NBI collaboration with Rigshospital, Copenhagen

### Atomic Spin magnetometry for **Noninvasive cardiac diagnostics**



### Entangled state of 10 9- 10 11 atoms

# Only very special types of such states survive High symmetry helps

- single mode squeezed states
- two mode squeezed states = EPR entangled Julsgaard et al Nature 2001; Sherson et al Nature 2006; Thomas et al Nature Physics 2021
- symmetric collective single excitations (Fock states)
   Dideriksen et al Nature Comm 2021

### Suppressing quantum noise in sensing



$$P_{L1,out} = -P_{L1,in} + sensor \ q. \ noise \\ \text{Squeezed} \\ \text{Light} \\ \text{probe}$$



 $\Gamma$  - measurement rate  $\propto$  ensemble optical depth

C. Bærentsen et al, **Nature Comm. 15**, 4146 (2024)

(cooperativity)

### 12 dB squeezed light for Sensing generated by Atomic gas



C. Bærentsen et al, **Nature Comm. 15**, 4146 (2024) from RT atomic gas

## Perspective: combining squeezed probe with entangled spins for Magnetic Sensing





### Atomic Magnetic Induction Tomography

# Distant noninvasive detection of weakly conducting objects





### Atomic Magnetic Induction Tomography (Atomic MIT)

### Distant noninvasive detection of weakly conducting objects



Key advantage for quantum enhancement:
Signal grows as square of field frequency



### Squeezed state of oscillator generated by Stroboscopic Quantum Nondemolition measurement

G. Vasilakis et al, *Nature Phys.*, *April 2015*.

Proposal:

Braginsky, Vorontsov, Khalili et al, 1970s

Primer: Back action evading stroboscopic measurement on an oscilla



Squeezed state of an oscillator consisting of 10<sup>8</sup> atoms





### SQUEEZING BY BEPEATER AND

G. Vasilakis et al, Nature Physics 11, 389–392 (2015)

### **Entanglement assisted MIT**



Stroboscopic projection measurement on Z axis collapses the spin state into a squeezed state

### Magnetic Induction Tomography with Spin Squeezed Sensor Atoms



PHYSICAL REVIEW LETTERS **130**, 203602 (2023)

## Magnetic Induction Tomography with Entangled Atoms Towards brain/heart diagnostics via conductivity measurement



Zheng et al. **PRL** (2023). Highlighted by Physics World and by APS Physics Magazine



#### Goals:

Detection of brain, heart anomalies by noninvasive conductivity measurements

### Quantum Magnetic Induction Tomography for tissue diagnostics



### Tomography by brain conductivity





Image courtesy of D. Naik