
  
Entanglement Lectures:  

tools and methods 

PARATY, Brazil, 2025 

Anna Sanpera Trigueros (UAB) 



3. Understanding the basic ingredients of quantum 
advantage forms the foundation for quantum 
technological applications. 

4. ENTANGLEMENT is necessary for many of those 
applications. 

Why entanglement? 

2. Quantum information looks for information-
processing tasks that (might) offer quantum 
advantage. 

1.  Entanglement is at the heart of quantum physics



In these lectures:
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First, we will warm up with the postulates of QM & notation  

Define entanglement in (bipartite) pure states  

Look at non- trivial protocols that use pure entangled states. 

Introduce the problem of separability/entanglement for mixed    
bipartite states. 

Certify entanglement using criteria: partial transposition,    
majorization, cross-norm, covariance matrix, entanglement          
witnesses and quantum maps. 

Quantify entanglement. 

Complementary to the lectures of Otfried Ghüne/ Eugene Polzik  



Lecture 1
1.1  Postulates (warm-up) 
1.2  Composite systems 
1.3  Entanglement in pure states 
1.4  Protocols that use entangled pure states 
1.5  Mixed states 
1.6   Entanglement in mixed states



1.1 The Postulates of QM—Recap

POSTULATE 1: Associated to any isolated physical system is a Hilbert 
space .  The system is completely described by its state vector,  

, which is a unit vector in the system’s state space. 

POSTULATE 2: The evolution of the state of a closed (isolated)  
quantum system is given by 

                            

where   is a unitary operator.

ℍ
|ψ⟩ ∈ ℍ

U(t)
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|ψ(t)⟩ = U(t)|ψ⟩



POSTULATE 3: Measurements are described by any collection of 
operators                         

                     

where m denotes the measurement outcome.   

If the system is in state ,  then the probability of observing         
outcome m is given by   

                        

and the post-measurement state is  

Example: Measuring a qubit: 2 operators  M_0 =|0X0| and M_1= |1 X 1| 

{Mm : ℍ → ℍ | ∑
m

M†
m Mm = 𝕀}

|ψ⟩ ∈ ℍ

pm = ⟨ψ|M†
mMm|ψ⟩

|ϕm⟩ =
Mm|ψ⟩

pm



Postulate 4:  The state space of a composite physical system is given by 
the tensor product of the state spaces of each of its constituent parts 

Remark: Notice that the tensor product is the ONLY way to preserve the 
superposition principle and all other q. propertites in composite systems! 

                                                    

                           System A + B  

     |01>  YES! 

      |0> + |1>  NO!

ℍA+B = ℍA ⊗ ℍB

ℍA+B ≠ ℍA + ℍB
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ℍTotal = ℍ1 ⊗ ℍ2 ⊗ ℍ3 ⊗ ⋯ ⊗ ℍN

≡
N

⨂
k=1

ℍk

BA



1.2 Composite systems.

Definition 1:  Let  be two vector spaces of dimension  
respectively.  Suppose that  is an orthonormal basis of  and 

 an orthonormal basis of .   

Then an orthonormal basis of  is   

ℍ1, ℍ2 d1, d2
{|i1⟩}d1

i1=1 ℍ1

{|i2⟩}d2
i2=1 ℍ2

ℍ = ℍ1 ⊗ ℍ2
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{|i1⟩ ⊗ |i2⟩}, i1 ∈ (1,⋯, d1), i2 ∈ (1,⋯, d2)

Properties of the tensor product



Properties of tensor product

1. Let .  Then  where  denotes the 
(finite) dimension of the Hilbert space. 

2. Whenver the dimension of  is finite, a Hilbert space is equivalent 
to a complex vector space. (see lectures of E. Polzik)

ℍ = ℍ1 ⊗ ℍ2 |ℍ| = |ℍ1| × |ℍ2| |ℍ | = d

ℍ
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 3.  Suppose , with  and   

with  ,  orthonormal basis of .  Then 

|ψ⟩AB = |ϕ⟩A ⊗ |χ⟩B |ϕ⟩A =
d1

∑
i1=1

ϕi1|i1⟩ |χ⟩B =
d2

∑
i2=1

χi2|i2⟩

{|i1⟩}d1
i1=1 {|i2⟩}d2

i2=1 ℍ1, ℍ2

|ψ⟩ =
d1

∑
i1=1

ϕi1|i1⟩ ⊗
d2

∑
i2=1

χi2|i2⟩ =
d1

∑
i1=1

d2

∑
i2=1

ϕi1χi2|i1⟩ ⊗ |i2⟩ =
d1

∑
i1=1

d2

∑
i2=1

ϕi1χi2|i1i2⟩



Properties of the tensor product

Equivalently, , and let ,  be 

orthonormal basis of .  Then, the tensorial product of vectors is:

|ψ⟩AB = |ϕ⟩A ⊗ |χ⟩B {|i1⟩}d1
i1=1 {|i2⟩}d2

i2=1

ℍ1, ℍ2
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|Ψ⟩AB =

ψ11
ψ12
⋮

ψ1d2

ψ21
⋮

ψ2d2

⋮
ψd11

⋮
ψd1d2

=

ϕ1

χ1
⋮

χd2

ϕ2

χ1
⋮

χd2

⋮

ϕd1

χ1
⋮

χd2

=

ϕ1χ1
⋮

ϕ1χd2

ϕ2 χ1
⋮

ϕ2 χd2

⋮
ϕd1

χ1

⋮
ϕd1

χd2

d1 x d2



Properties of the tensor product

1. Let .  Then  

2. Suppose , and let ,  be orthonormal 

basis of .  Then  

3. Suppose .  Then  is 
given by 

ℍ = ℍ1 ⊗ ℍ2 |ℍ| = |ℍ1| × |ℍ2|

|ψ⟩ = |ϕ⟩ ⊗ |χ⟩ {|i1⟩}d1
i1=1 {|i2⟩}d2

i2=1

ℍ1, ℍ2 |ψ⟩ =
d1

∑
i1=1

d2

∑
i2=1

ϕi1χi2|i1⟩ ⊗ |i2⟩

B : ℍ1 → ℍ1, C = ℍ2 → ℍ2 A = B ⊗ C; A : ℍ → ℍ,
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A = ∑
i1,j1

Bi1,j1|i1⟩⟨j1| ⊗ ∑
i2,j2

Ci2,j2|i2⟩⟨j2|

= ∑
i1,j1

∑
i2,j2

Bi1,j1Ci2,j2 | i1, i2⟩⟨j1, j2 |



Properties of the tensor product
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A11,11 A11,12 ⋯ A11,d2d2

A12,11 ⋯
⋮ ⋱

Ad1d1,11 ⋯ Ad1d1,d2d2

=

B11

C11 ⋯ C1d2

⋮ ⋱
Cd21 ⋯ Cd2d2

⋯ B1d1

C11 ⋯ C1d2

⋮ ⋱
Cd21 ⋯ Cd2d2

⋮ ⋱

Bd11

C11 ⋯ C1d2

⋮ ⋱
Cd21 ⋯ Cd2d2

⋯ Bd1d1

C11 ⋯ C1d2

⋮ ⋱
Cd21 ⋯ Cd2d2

Explicitly, the tensorial product of matrices corresponds to: 



Properties of the tensor product

Definition 2: Let .  A unitary  is said to be a local 

operation if                               

Otherwise the operation is said to be non-local unitary. 

Definition 3: Let .  A measurement with operators 

 is said to be local if every measurement operator 

 is of the form  

otherwise the measurement is said to be non-local

ℍ =
N

⨂
i=1

ℍi U : ℍ → ℍ

ℍ =
N

⨂
i=1

ℍi

{Mk : ℍ → ℍ}M
k=1
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U = ⊗N
i=1 Ui, Ui : ℍi → ℍi

Mk =
N

⨂
i=1

M(i)
k



Recall: properties of the tensor product

1. Let .  Then the dimension of  

2. Suppose , where  and  with 

,  two orthonormal basis of .  Then       

                         

3. Suppose .  Then  is given by                 

              

4. The tensor product space  inherits all the properties of its 
constituent parts (linearity, multiplicative & additive identity etc etc)

ℍ = ℍ1 ⊗ ℍ2 |ℍ| = |ℍ1| × |ℍ2|

|ψ⟩ = |ϕ⟩ ⊗ |χ⟩ |ϕ⟩ =
d1

∑
i1=1

ϕi1|i1⟩ |χ⟩ =
d2

∑
i2=1

χi2|i2⟩

{|i1⟩}d1
i1=1 {|i2⟩}d2

i2=1 ℍ1, ℍ2

|ψ⟩ =
d1

∑
i1=1

d2

∑
i2=1

ϕi1χi2|i1⟩ ⊗ |i2⟩

A : ℍ1 → ℍ1, B = ℍ2 → ℍ2 C : ℍ → ℍ, C = A ⊗ B

A = ∑
i1,j1

∑
i2,j2

Bi1,j1Ci2,j2|i1⟩⟨ j1| ⊗ |i2⟩⟨ j2| = ∑
i1,j1

∑
i2,j2

Bi1,j1Ci2,j2 | i1i2⟩⟨ j1 j2 |

ℍ = ℍ1 ⊗ ℍ2
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Composite systems: meaning 
Postulate 4:  The state space of a composite physical system is given 
by the tensor product of the state spaces of each of its constituent 
parts 

Remark: Tensor products can be used to describe the total state space 
of a single physical system.  E.g., consider describing both the position 
as well as the angular momentum of a particle 
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ℍTotal = ℍ1 ⊗ ℍ2 ⊗ ℍ3 ⊗ ⋯ ⊗ ℍN

≡
N

⨂
k=1

ℍk

ℍTotal = ℍPosition ⊗ ℍAng.Mom.



Composite systems
The more prudent way of understanding the tensor product is that it 
combines together Hilbert spaces associated to distinct properties; 
(different particles, position, energy, angular momentum of the same 
particle etc etc etc.) 

Remark: We will often omit the tensor symbol entirely writing 
                                 
                                       

Definition 4:  A composite quantum system is said to be in a product 
state if  

where  and .  

|i1⟩ ⊗ |i2⟩ ≡ |i1i2⟩

|Ψ⟩ ∈ ℍTotal |ψi⟩ ∈ ℍi
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|Ψ⟩ =
N

⨂
i=1

|ψi⟩



1.3 Entangled states: 

Definition 5:  A composite quantum system that cannot be written as a 
productos state is said to be entangled.  
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|Ψ⟩ ≠
N

⨂
i=1

|ψi⟩



Examples
Let  with dimension .  Write the state  in 
tensor product form 

1.  

2.  

3.  

4.  ( IMPOSSIBLE !) 

ℍ1 = ℍ2 d = 2 |Ψ⟩ ∈ ℍ1 ⊗ ℍ2

|Ψ⟩ =
1
2 (|00⟩ + |01⟩ + |10⟩ + |11⟩)

|Ψ⟩ =
1

3
|00⟩ +

2
3

|01⟩

|Ψ⟩ =
1
6

|00⟩ +
1
3

ei π
3 |01⟩ +

1
6

ei π
4 |10⟩ +

1
3

ei 7π
4 |11⟩

|Ψ⟩ =
1

2
(|00⟩ + eiϕ|11⟩)
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=
1
2

( |0⟩A + |1⟩A) ⊗ ( |0⟩B + |1⟩B)



Entanglement: q. correlations
Entanglemet deals with a generic form of quanum correlations, and is 
linked to the tensorial structure of the Hilbert space. 

Entanglement is a propertie of composite quantum systems. We shall 
consider from now generically bipartite quantum states (Alice & Bob) 

(Otfried Ghüne will tell us about multipartite quantum systems) 

Entanglemet is arguably the most genuine property of quantum physics 
as allows to perform tasks that otherwise are impossible. 

Entanglement is considered to be a resource for quantum information 
tasks. There are other resources as for instance coherence, locality, 
asymmetry, etc.. 
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|ψ⟩AB ∈ ℍA ⊗ ℍB



Bipartite Entanglement
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Theorem 4 [Schmidt Decomposition]: Let . Then, there exist 
two orthonormal basis  such that  

where  are called the Schmidt coefficients of the state. 

Remark 1:  The number of non-zero Schmidt coefficients of the state is 
called the Schmidt rank r of the state, whereas the basis 

 is known as the Schmidt basis of the state. 

Remark 2:  A bipartite state is a product state iff has Schmidt rank = 1, 
otherwise it is entangled. 
Remark 3:  The Schmidt decomposition is nothing else than the Singular 
Value Decomposition: Given a not square matrix A = U D V where D is 
diagonal and U and V are unitary. 

|ψ⟩ ∈ ℍA ⊗ ℍB
{|vi⟩}d1

i=1 ∈ ℍA, {|ui⟩}d2
i=1 ∈ ℍB

λi ≥ 0,
r

∑
i=1

λ2
i = 1

{|vi⟩}d1
i=1 ∈ ℍA, {|ui⟩}d2

i=1 ∈ ℍB

|ψ⟩ =
r≤min(d1,d2)

∑
i=1

λi |vi, ui⟩



Reduced states of composite systems
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Consider two parties—Alice and Bob—each of which hold part of a 
composite quantum system in some state , where 

   

How should Alice (Bob) describe the state of their respective system? 

Clearly if  where  then   
everything is OK! 

What about entangled states?

|Ψ⟩AB ∈ ℍAB = ℍA ⊗ ℍB
|ℍA | = dA, |ℍB | = dB,

|Ψ⟩AB = |ϕ⟩A ⊗ |χ⟩B |ϕ⟩A ∈ ℍA, |χ⟩B ∈ ℍB

|ψ⟩ =
r ≤min(dA,dB)

∑
i=1

λi |vi, ui⟩



Reduced states of composite systems
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Consider the bipartite state  

Suppose B measures in the standard basis.  What is the probability that 
B obtains outcome 0 or 1? 

Now suppose that B doesn’t tell A the outcome of the measurement. All 
A can say is that her system is equally likely to be in either state!

|Ψ⟩AB =
1
2 (|0⟩A|0⟩B + |1⟩A|1⟩B)

AB⟨Ψ|(𝕀A ⊗ |0⟩B⟨0|)|Ψ⟩AB =
1
2

AB⟨Ψ|(𝕀A ⊗ |1⟩B⟨1|)|Ψ⟩AB =
1
2

⇒

⇒

|Φ⟩AB = |0⟩A|0⟩B

|Φ⟩AB = |1⟩A|1⟩B

P3



Reduced states of composite systems
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Given a bipartite pure state  , the description of each subsystem 
is given by its reduced density matrix: 

                    

                     

                                                     

                                                    

|Ψ⟩AB

ρA ≡ TrB( |Ψ⟩AB⟨Ψ | ) =
dB

∑
i2=1

⟨i2 | ( |Ψ⟩AB⟨Ψ | ) | i2⟩

ρB ≡ TrA( |Ψ⟩AB⟨Ψ | ) =
dA

∑
i1=1

⟨i1 | ( |Ψ⟩AB⟨Ψ | ) | i1⟩

ρA =
1
2

( |0⟩A⟨0 | + |1⟩A⟨1 | )

ρB =
1
2

( |0⟩B⟨0 | + |1⟩B⟨1 | )

|Ψ⟩AB =
1
2 (|0⟩A|0⟩B + |1⟩A|1⟩B)



Reduced states of composite systems
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Given a bipartite pure state  , its Schmidt decompostion  

                                  

gives us information about the entanglement content of the state! 

Remarks 1: The Schmidt rank r cannot exceed min (d_A, d_B) since not more 
degrees of freedoms than the min of d_A and d_B, can be entangled between 
both systems. 

Remark 2:  A  maximally entangled state has maximal Schmidt rank and all 

its Schmidt  coeficients are equal . Example  

( ) 

Remark 3: The Schmidt decomposition (SVD) only exist for BIPARTITE systems

|Ψ⟩AB

λi =
1

d
|Ψ⟩ =

1

2
(|00⟩ + |11⟩)

d1 = d2 = 2

|ψ⟩AB =
r ≤min(dA,dB)

∑
i=1

λi |vi, ui⟩



Reduced states of composite systems

25

Given a bipartite pure state  , to find its Schmidt decompostion we 
should:   (i) calculate the reduced density matrices of the subsystems 

           (ii) diagonalize them.   

In the Schmidt  basis, both reduced density matrices are diagonal (This is the 
singular value decomposition!) 

Since                    

                        

|Ψ⟩AB

ρA ≡ TrB( |ψ⟩AB⟨ψ | ) =
d1

∑
i

λ2
i |vi⟩⟨vi |

ρB ≡ TrA( |ψ⟩AB⟨ψ | ) =
d2

∑
i

λ2
i |ui⟩⟨ui |

|ψ⟩AB =
min(d1,d2)

∑
i=1

λi |vi, ui⟩



1.4 Entanglement based Protocols: super-
dense coding
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Theorem 2: Holevo bound: n-qubits cannot carry more information 
(classical) than n bits (very important theorem)  

Alice Bob

ρx x = 0,… . n
p0…px

Quantum 
channel



1.4 Protocols: super-dense coding

Super-Dense Coding: Alice wants to send two bits of information (classical) to Bob 
with a single use of a channel.  
How? Sharing forhand a maximally entangled state !  
Alice has bit a=(0,1) and the bit b=(0,1) and  shares a maximally entangled state 
of two qubits of the form: 

:     

                      ALICE want sto send:    she does  and sends her qubit to Bob     BOB measures 

                                                          

                 

00: do nothing |Φ+⟩AB ⟶ |Φ+⟩ =
1

2
(|00⟩ + |11⟩)

01: do Xrotation |Φ+⟩AB ⟶ |Φ−⟩AB =
1

2
(|00⟩ − |11⟩)

10: do NOT Z |Φ+⟩AB ⟶ |Ψ+⟩AB =
1

2
(|01⟩ + |10⟩)

11: do iYrotation |Φ+⟩AB ⟶ |Ψ−
AB⟩ =

1

2
(|01⟩ − |10⟩)
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|Φ+⟩AB =
1

2
(|00⟩ + |11⟩)



Example of the use of pure state entanglement: 
super-dense coding

PROTOCOL example: 

1) if a=1 (b=1) apply a  to the qubit A of the state . 

(2) Send qubit A of  to Bob 

(3) Bob performs a CNOT gate  

σz (σx) |Φ+⟩AB

|ψ⟩AB

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
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|Φ+⟩AB =
1

2
(|00⟩ + |11⟩)



Example of the use of pure state entanglement: 
superdense coding

(4) Bob performs a Hadamar gate on control target  

(5)  Bob measures on his qubits to extract the value of the 2 bits. 

Let’s do it:  

(i) write the protocol as a quantum circuit 

(ii) classical bits are used here a controled bits. Depending on their value Alice does 
one operation or another. 

(iii) For instance if Alice wants to send (0,0), the protocol gives the following 
output  

                    

H =
1

2 (1 1
1 −1)

|Φ+⟩AB ⇒P1 |Φ+⟩AB ⇒P3
1

2
( |0⟩ + |1⟩) |0⟩ ⇒P4 |00⟩

29



1.5 Mixed states: Ensembles of quantum states
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Definition 5: An ensemble of pure states  (mixed state) describes a 
situation where a quantum system can be in any one of a different pure 
states  with probability . 

                                   

Remarks: 

1. The subindex i can be discreet or continuous 

2. It is customary to represent a particular ensemble of quantum states as  

3. Unitarily evolving an ensemble of states by an operator U gives rise to 
another ensemble 

4. Performing a measurement with operators  on an ensemble gives 
rise to another ensemble 

|ψi⟩ ∈ ℍ pi

ρ = ∑
i

pi |ψi⟩⟨ψi |

{Mk}

{pi, |ψi⟩}

{pi, U|ψi⟩}

pi, q(k | i) = ⟨ψi|M†
k Mk|ψi⟩, |ϕ(k)

i ⟩ =
1

q(k | i)
Mk |ψi⟩



Recap: The Postulates of Q.M
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in the most general terms possible… 

Postulate 1:  Associated to any physical system is a density operator 
.  If the system is known to be in state  with 

probability  then .   

Postulate 2: The evolution of a quantum system is described by a 
completely positive, (generally time-dependent) trace non-increasing map 

 such that  

Postulate 4:  The state of a composite quantum system is described by a 

density operator  If the state of each constituent system is 

given by  then the state of the composite system is  

ρ ∈ ℬ(ℍ), ρ > 0, tr(ρ) = 1 ρi
pi ρ = ∑

i

pi ρi

ℰ : ℬ(ℍin) → ℬ(ℍout)

ρ ∈ ℬ (
N

⨂
i=1

ℍi) .

ρi ρ =
N

⨂
i=1

ρi

ρ(t) = ℰt (ρ)



Entanglement in mixed states
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Definition: A bipartite quantum state  is said to be 
separable if it the can be written as 

  

with .  In other words the state  

is separable iff it is a convex combination of product of projectors in 
local states.  

Remarks: To be separable means that the state can be prepared using 
local operations and classical communication. Such operatos are called 
LOCC

ρAB ∈ ℬ(ℍA ⊗ ℍB)

pi ≥ 0 and∑ pi = 1, (qi ≥ 0 and∑ qi = 1) ρAB

ρAB = ∑
i

pi (ρA
i ⊗ ρB

i ) = ∑
i

qi (|ei⟩A⟨ei | ⊗ |fi⟩B⟨ fi | )



The world according to 
Quantum Information 



The world according 
to QI

States:   	

Resources/properties: quantum correlations, coherence,…	

Transformations (CPTP maps):   **	

Measurements:  Projective, POVM’s	

Tasks: discrimination, computation, complexity,        
communication, simulation, metrology, …..   	
Protocols:  how to achieve a desired task optimally  

ρ ∈ ℬ(ℋ); ρ ≥ 0; Tr(ρ) = 1

Λ : ℬ(ℋA) ⟶ ℬ(ℋB)



The world according to QIT: 	
convex sets and convex polytops

  𝒫NS → p(a |x) = p(a |xy) = Σbp(ab |xy)

p(b |y) = p(b |xy) = Σap(ab |xy)

2. Local ℒ → p(ab |xy) = ∫Λ
dλ p(a |xλ) p(b |yλ)

3. Quantum 𝒬 → p(ab |xy) = Tr(ρAB[Ma|x ⊗ Mb|y])

1. NS (Non-Signaling)

ℒ ⊂ 𝒬 ⊂ 𝒫NS

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wherner, Rev. Mod. Phys (2014)

S. Popescu, D. Rorhlich (1994)

Cirel’son (1980)

A Bell inequality , is a linear inequality for the probabilities p (ab|xy )	
that is necessarily verified by any model satisfying the locality	
condition



Quantification of entanglement

Entanglement permits to do tasks that cannot be done with classical 
states: superdense coding, teleportation, and many algorithms  

Entanglement is therefore a RESOURCE for quantum information. 
Free states are separable states and LOCC are free operatins.  

Unit of entanglement is the e-bit, that is, the entanglement 
contained in a maximally entangled bipartite state of two-qubits 

What is the entanglement in an arbitrary pure state ? 

What is the amount of entanglement in a mixed state  ? 

|ΦAB⟩

ρAB

36



Lecture 2
2.1  Entanglement quantification & measures 
2.2  Entanglement for pure states 
2.3  Entanglement for mixed states 
2.4  Entanglement criteria 
2.5  Entanglement witnesses 



Entanglement Measures
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A measure of entanglement  must fullfill: 

1.  

2.  , that is, if the state is separable 

3.  

4. Given a LOCC map ,  

5. (*) Convexity: it may happen that  

6. (*) Additivity  

Remarks:  (i) Convexity and Additivity are not necessary !  

(ii) There are many different entanglement measures and normally they are not equivalent!

E

E(ρ) ≥ 0 for∀ρ ∈ ℬ(ℍA ⊗ ℍB)

E(σAB) = 0 if σAB = ∑
i

piσA
i ⊗ σB

i

E(UA ⊗ UBρU†
A ⊗ U†

B) ≤ E(ρ)

Λ E(Λ(ρ)) ≤ E(ρ)

E(∑ piρi) ≤ ∑ piE(ρi)

E(ρ⊗n) = nE(ρ)



Entanglement of pure states
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Definition:  The entanglement entropy is the standard entanglement 
measure used for bipartite pure state  

                          

where    is the von Neumann entropy and 

 are the reduced density matrices, i.e. 

|ψ⟩AB

E( |ψ⟩AB) = S(ρA) = S(ρB)

S(ρ) = − Trρ log(ρ)

ρA(ρB) ρA = TrB( |Ψ⟩AB⟨Ψ | )



Entanglement of pure states
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Remarks:   

if  (product states have zero entanglement) 

if  (Shannon entropy) 

if  (an e-bit) 

if  

If the pure state is N-multipartite  we can always calculate the 
entanglement entropy  of a given bipartite splitting, i.e.  where 

 is any bipartite splitting of the N parties 

|ψ⟩AB = ΦA ⊗ φB ⇒ E( |ψ⟩AB) = 0

|Ψ⟩AB =
M

∑
i=1

λi |ei⟩ | fi⟩ ⇒ E( |Ψ⟩AB) = − ∑ λi log λi

|ψ⟩AB = |Ψ−⟩AB =
1

2
( |01⟩ − |10⟩) ⇒ E( |Ψ−⟩AB) = 1

|Ψ+⟩AB =
1

d

d

∑
i=1

| i⟩ | i⟩ ⇒ E(Ψ+⟩AB) = log2 d

|Ψ⟩1,2,..N
E( |Ψ⟩AB)

AB
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Recall:  To every ensemble of quantum states  one can 
associate a density operator  .  

Entanglement measures: convex roof extensions! 
Entanglement of Formation  
Definition: Given a bipartite mixed state , the entanglement of 
formation is defined as: 
                            

Remarks: (i) The infimum is taken over all possible ensembles 
compatibles with the mixed state 
Meaning: The entanglement of formation tell us on average how many 
entanglement is need 
                        

{pi, |ψi⟩}
ρ = ∑

i

pi |ψi⟩⟨ψi| ∈ ℬ(ℍ)

EoF

ρAB

EF(ρAB) = min
{pi,|ψ i⟩AB} ∑ piE( |ψ i⟩AB)
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Entanglement of Formation   

                            

The convex roof optimization is VERY HARD to do, but for 2-qubit                       
mixed states it can be computed via the concurrence. 

Definition: The concurrence of a 2 qubit pure state  is a measure 
of entanglement given by 

                   

using the computational basis {|oo>,|o1>,|10>,|11>}

EoF

EF(ρAB) = min
{pi,|ψ i⟩AB} ∑ piE( |ψ i⟩AB)

|ψ⟩AB

C( |ψ⟩AB) = |⟨ψAB | ψ̃AB⟩ | where | ψ̃⟩AB = σy ⊗ σy |ψ⟩*AB
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Definition: The concurrence of a 2-qubit mixed state  is a measure 
of entanglement given by 

                              

where  are the eigenvalues in decreasing order of the operator 
  where  

Theorem: The entanglement of formation of a 2-qubit mixed state  
is 

                        

and 

ρAB

C(ρAB) = min(0,λ1 − λ2 − λ3 − λ4)

λi

R = ρAB ρ̃AB ρAB ρ̃AB = (σy ⊗ σy)ρ*AB(σy ⊗ σy)

ρAB

E(ρAB) = F(C(ρAB)) = h[
1 + 1 − C2

2
]

h[x] = − x log x − (1 − x)log(1 − x)
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Entanglement cost and entanglement of distillation and two dual measures defined in 
the assymptotic limit. How many singlets do I need to prepare a bipartite state and how 
many singlets can I distill from a given state  if I have many copies of the state.  

Definition: The entanglement cost of a mixed state  denoted by  is the infimum 
over all sequences of LOCC protocols such that given m-copies of the singlet state                 

                 where D is a proper distance.  

The entanglement cost of  is defined as  

                                         

                                          

in simple words if defines the number e -bits one needs to create a entangled state  
which is the closest to the one we could achieved if we had n copies of our state using  
only LOCC operations.   can obtain  per input copy by LOCC operations 
fr

ρAB

ρAB Ec(ρAB)
|Ψ−⟩⊗m

AB

|Ψ−⟩⊗m
AB →

L∈LOCC
σ such that D(ρ⊗n

AB, σ) →
n→∞

0

ρAB

Ec(ρAB) = min
L∈LOCC

( lim
n→∞

m
n

)

Ec(ρAB) = lim
n→∞

EF(ρ⊗n
AB )

n

σ
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. Definition: The entanglement of destillation of a mixed state  denoted 
by  is the suprem over all sequences of LOCC protocols L such that 
given n-copies of our state  we approach a state whose distance to  

  singlets is zero in the assymptotic limit.  If this is not possible 
.  The entanglement of distillation is the supremum over all possible 

destillation rates. The rate of distillation is        

The entanglement distillation  of  is defined as  

                       

where  

                                         

, 

ρAB
ED(ρAB)

ρ⊗n
AB

|Ψ−⟩⊗m
AB

ED = 0

ρAB

ED(ρAB) = max
L∈LOCC

( lim
n→∞

m
n

)

D( |Ψ−⟩⊗m, σn) →
n→∞

0

ρ⊗n
AB

Entanglement of mixed states: entanglement cost 
and entanglement distillation
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Theorem  The entanglement of destillation is always smaller equal to 
the entanglement cost   

                            ED(ρAB) ≤ Ec(ρAB)

ρ⊗n
AB |Ψ−⟩⊗m

AB

Interpretation: In the limit of large n, Alice and Bob can destill m 
singlets           from n copies of their state,  using only LOCC 
operations.  

The entanglement of destillation is the suprem over all the set of LOCC 
operations
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 We introduce a last measure of entanglement whose meaning will 
will be clearer in the next slides.  

Definition: The negativity of a shared quantum systems  is the 
absolute sum of the negative eigenvalues of the partial transpose 
density matrix   

                 where  

                

ρAB

𝒩(ρAB) =
| |ρTB

AB | | − 1
2

| |A | | = Tr( A†A)

 Negativity 
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To determine if a mixed state  is entangled or separable is, in general, a NP-hard 
Problem (meaning not possible to solve in some cases).  

Entanglement criteria provide necessary although not  sufficient conditions.                    

Definition: Let  be a bipartite density matrix that can be expressed as            

                                 

the partial transpose of the density matrix  with respect to system A is 

                                  

A similar definition exist for the partial transpose w.r.t subsystem B

ρAB

ρAB

ρAB = ∑
1 ≤ i, j ≤ dA

1 ≤ μ, ν ≤ dB

ρμν
ij ( | i⟩⟨ j | )A ⊗ |μ⟩⟨ν |B )

ρAB

ρTA
AB = ∑

1 ≤ i, j ≤ dA

1 ≤ μ, ν ≤ dB

ρμν
ij ( | j⟩⟨i | )A ⊗ |μ⟩⟨ν |B )

Operational entanglement criteria
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Theorem: PPT criterion. If a state  is separable, then  and 
    

Proof: Trivial applying partial transposition on a separable state.  A state that 
fullfills their partial transposes are positive is called a PPT (positive partial 
transpose) state. 

Recall:  means its eigenvalues are all larger or equal zero. 

Theorem: If ,  PPT is sufficient and necessary to proof 
the state is separable.  

In higher dimensions, PPT criterion is NECESSARY for separability but not 
SUFFICIENT, meaning that there are states that are entangled and fulfill that 

.                              

ρAB ρTA
AB ≥ 0

ρTB
AB = (ρTA

AB)T ≥ 0

ρTA
AB ≥ 0

dim(ℍA) × dim(ℍB) ≤ 6

ρTA
AB ≥ 0 and ρTB

AB ≥ 0



Entanglement Criteria

50

             

Theorem: Entropy entanglement criterion. If a state  is separable, 
then  

                            

where  is the von Neumann entropy of the state. 

From all operationa entanglement criteria, PPT is probably the  
strongest but there are entangled states that are detected by the 
majorization or by entropy criterion that are not detected by PPT.

ρAB

S(ρAB) ≥ S(ρA) and S(ρAB) ≥ S(ρB)

S(ρ) = − Tr(ρ log ρ)
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There are entanglement criteria that depend on the state we consider, 
for that reason they are called non-operational criteria             

Lemma:   

Theorem: Han-Banach theorem. Let S be a convex compatct set in a 
finite dimensional Banach space. Let  be a point with  then there 
exist a hyperplane that separates  from S 

Tr(ρTA
ABσAB) = Tr(ρABσTA

AB)

ρ ρ ∉ S
ρ

S

ρ

hyperplane
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Definition:  An Hermitian operators (observable)  is called an 
entanglement witness (EW) if and only if 

1.  where S is the set of separable states 

2. There exist at least one entangled state  such that 

W

Tr(WρS) ≥ 0 ∀ρ ∈ S

ρ Tr(Wρ) < 0

S

ρ

hyperplane
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Definition:  An entanglement witness is called decomposable if and only if there 
exsist operators P and Q such that  

                               

Lemma: A decomposable entanglement witness cannot detect PPT entangled states 

Theorem:  

1.  is entangled if and only if there exist a witness W that detects it: . 

2.  is an entangled PPT state if and only if there exist a non decomposable 
entanglement witness that detects it 

3.  is a separable state if and only if   for all entanglement witnesses.  

W = P + QTA with P, Q ≥ 0

ρ Tr(Wρ) < 0

ρ

σ Tr(Wσ) ≥ 0
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decomposable witness

S
PPT

NPT

non-decompasable witness

S sepable states 
PPT entangled states 
NPT entangled states

The structure of the space of quantum states 

Entanglement witness



Entanglement witness

Example: Let us construct a witness for a bipartite pure maximally 

entangled state. We take |Φ+⟩ =
|00⟩ + |11⟩

2

A witness operator is immediate construct as W = QTA = ( |Φ+⟩⟨Φ+ | )TA

Q =

1/2 0 0 1/2
0 0 0 0
0 0 0 0

1/2 0 1 1/2

QTA =

1/2 0 0 0
0 0 1/2 0
0 1/2 0 0
0 0 1 1/2

= (1 − 2 |Ψ−⟩⟨Ψ− | )

To show that W is a witness we need to show that 



Entanglement witness

QTA =

1/2 0 0 0
0 0 1/2 0
0 1/2 0 0
0 0 1 1/2

= (1 − 2 |Ψ−⟩⟨Ψ− | )

To show that  is a witness we need to show  

(i) , this is equivalent to show that    
. It suffices to write 

 

(ii) There  exist one entangled state such that . Choose 
. Trivially 

W = QTA = ( |Φ+⟩⟨Φ+ | )TA

Tr(Wρsep) ≥ 0
Tr(W |e, f⟩⟨e, f | ) = ⟨e, f |W |e, f⟩ ≥ 0
|e⟩ = ao |0⟩ + b0 |1⟩, and | f⟩ = a1 |0⟩ + b1 |1⟩, with ai, bi ∈ ℂ

Tr(Wρe) < 0
ρe = |Ψ−⟩⟨Ψ− | Tr(Wρe) = − 1


