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ka

1. is ot the heart of quantum physics

2. Quantum information Llooks for information-
processing tasks that (might) offer quantum
advantage.

3. Understanding the basic ingredients of quantum
advantage forms the foundation for quantum
technological applications.

4 Ls hecessary for many of those
applications.



In these lectures:

First, we will warm up with the postulates of @M & notation
A (bipm&i&e} pure states
Look at nown- brivial that use pure entangled states.

' Introduce the problem of for mixed
states.

using criteria: partial transposition,
ma jorization, cross-norm, covariance makbrix, entanglement
withesses and quantum maps.

Complementary to the lectures of Otfried Ghine/ Eugene Polzik
3



Lecture 1

1.1 Postulates (warm-—up)

1.2 Comyc}si&e svs&ems

1.3 Entanglement in pure states

14 Protocols that use entangled pure states
1.5 Mixed states

1.6 Entanglement in mixed states



1.1 The Postulates of @M—Recap

POSTULATE 1: Associaked to any ijsacat Sjsﬁem is a
The s-js&em is compi.e&etj deseribed bv tks 7

) € H, which is a unit vector in the system’s state space.

POSTULATE 2: The evolution of the state of a
quantum system is given bj

lw(t)) = U@)|y)

where U(?) is a opero&on



POSTULATE 3: Measurements are described by any collection of
operators

{Mm:I]-I]—>[H]|ZM,;CLMm:I]}

where denotes the measurement

1f the system is in state ) € H, then the of observing
outcome m is given bv

P = (WIMIM, )

M, |y)

o

: Measuring a qubit: 2 operators M_o =|oXo| and M_1= |1 X 1]

and the state is |¢,) =



Postulate 4: The state space of a composite physical system is given bv
the tensor produck of the state spaces of each of its constituent parts

Remarie: Notice that the tensor pradua& ts kthe ONLY way ko preserve the
superposé&&om prmcipte and all other 9. proper&i&es LA comyosi&e s:jsfzems!

System A + B

IH]A+B#|H|A+|H]B lO? + !17 NO!



1.2 Comyas&e Sjs%emsﬂ

Properties of the tensor produa&

Definition 1: Let Hy, H, be two vector spaces of dimension d;,d,
respectively. Suppose that {|l1>} is an orthonormal basis of H, and

{li,)}% | an orthonormal basis c:v{ [H]z.
Iy=

Then an of H=H, ® H, is

i) @ lipp ), iy € (Lo, dy), i € (1,0, dy)



Properties of tensor product

1. Let H=H; ® H,. Then [H| = |H,| X |H,;| where |H|=d denoctes the
dimension of the Hilbert space.
2. Whenver the of H is , & Hilbert space is equivalent
to o complex vector space. (see lectures of £, Polzik)

3. Suppose |[y)p = [P)4 ® |1)p, with |P), = Z ¢ liy) and |y)p = Z)(z Ly,

=1 =1

wikth {|11)}i1=1, {|12)}l.2=1 orthonormal basis of H,, H,. Then

e e \

) = Zcblllzo S| SRS Y oer i AT SIS 4y

ll_ \12:1 } 11—1 12— ll_l 12—
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Properties of the tensor product

. Let H=H, ® H,. Then |[H| = |H,| X |H,]

. Suppose |y) = |@) ® [x), and let {|i1)}Z1:1, {|i2)};i2=1 be orthonormal
dy  dy
basis of Hy, Hy. Then [y) = 2 Z b xli) ® in)
i=1i,=1

SupposeB:[l-l]lﬁl]-ﬂl, C=H, > H,, Then A=BQRC; A:H->H, is
given bv

A= ZBil,j1|i1><j1| ® Zciz,j2|i2><j2|

= 2 2 BiiCag v i)
ilajl i2aj2

11



Properties of the tensor product

E’Zx[pi.iti&i.fj , the

A11,12

)
Alg,

Add, dod;

12
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Properties of the tensor product

N
Definition 2: Lek H=@)H,. A waitary U:H - H is said to be a
=1
W U=, U, U=

Gtherwise the opera&ia-n ts said ko be

N

Definition 3: Let H = ®I]—|]i. A measurement with operators
=

{M,:H - [I-[I}ZZ_1 is said to be U

M, = éM]g’)
=1

obherwise the measurement is said ko be

s of the form

13



Recall: properties of the tensor product
1. Let H=H, ® H,. Then the dimension of |H| = |H,| X |H,|

d, d,
2. Suppose [y) = |§) ® |y), where [) = ) ¢, i) and [y) = ) 1, lir) with

o= =
{|i1)}f1_1, {|i2)}fz_1 two orthonormal basis of H, H,. Then
15" 257

did,
W)= D) dixlin) ® lin)

3. Suppose A:H; - H;, B=H)—=>H,, Then C:H->H,C=AQ B is given bj

A=) Y B Coilintil ® )il = ), D B, ;i i)

LsJ1 )2 LsJ1 )2

14



Compos&&@. s:;s&ems: meaning

Postulate 4: The state space of a composite physical system is given
by the tensor product of the state spaces of each of its constituent

Fsm‘Es
[HlTotal [Hll ® HZ ® [Hl3 ® ® [Hl
- Q
k=1
Tensor produ,c&s can be used ko describe the kokal state space
of a physical system. E.q.,, consider describing both the position

as well as the angular momentum of a particle

[HlTotal |H]Posmon X HAng Mom.

16



Cc:}m!z?osi;%@. svs%@.ms

The more prudent way of understanding the tensor product is that it
combines together Hilbert spaces associated to properties;
(Adifferent particles, position, energy, angular momentum of the same
particle etc etc eke)

: We will often omit the tensor s:jmbc:-i. en&ire.i.v writing

i) ® |ir) = |ijiy)

Definition 4: A composite quam&um system is said to be in a

. jid ®Wfl

where |V) € Hp, and |y) € H.,

16



1.3 Entangled states:

Definiktion §: A composite quantum system be written as a
productos state is said

N
') # ® ;)
i=1

1L



£ XA F?i.es

Let H, = H, with dimension d =2, Write the state |Y) € H, Q H, in
tensor product form

L) =%(|oo> +101) +110) + [11)) =

2. |¥) = ——1|00) + \/301)
: 0 :

I By i, P
3 I‘P>=\E|00>+\@61?I01>+\Ee’ZHOH\Ee’%IH)

o S = (100) + €[11)) ( IMPOSSIBLE !)

o
V2

1%



Entanglement: q. correlations

Entanglemet deals with a generic form of quanum correlations, and is

Linked to of the Hilbert space.
Entanglement is a . We shall
consider from now generically quantum states ( )
¥)ap € Hy ® Hp
(Obfried Ghine will tell us about quantum systems)

Entanglemet is arquably the
as allows to perform tasks that otherwise are impossible.

Entanglement is considered to be a for gquantum information
tasks, There are obther resources as for instance coherence, Latat&j,
asvmmeErv, eke..

19



BiparE£E€ Entanglement

Theorem 4 : Leb ) € Hy ® Hy. Then, there exist two
orthonormal basis {|vl-)}§'i1 & H i {|ui)}fi1 € Hp such that

r<min(d,,d,)

ly) = Z Ai [V w;)
: i=1
where 4, > 0, Z A7 =1 are called of the state.
]

. The number of non-zero Schmidl coefficients of the state is called
the of the state, whereas the basis {|vi)}f;1 e H,, {|ui)}fi1 € Hg
s kowi as the of the state.

. A bipartite state Ut has Schmidk rank = 1,
otherwise it is entangled.,

. The Schwmidk deaompasi&imn is nothing else than the Singular Value
Decomposition: Given a not square matrix A = U D V where D is diagonal and
U and V are uni&arj.

20



Reduced states of composite systems

Consider two parties—Alice and Bob—each of which hold part of a
composite quantum system ua some state |V),; € Hyp = Hy @ Hp, where
|Hy | = dy, |Hp| = dp,

How should Alice (Bob) describe the state of their respective system?

Clearly f [ Phap = 19)a ® 1)p where |9), € Hy, |x)p € Hp then
everv&hihg ts OK!

What abouk
r <min(d,,dp)

ly) = 2 Ai Vi ;)

=1

1l



Reduced states of composite systems

Consider the bipar&i&e sktate

|W)ap = \/g (‘O>A‘O>B + ‘1>A‘1>B)

Su,ppose B measures i bhe skandard basis. What is the Prababéti&v Ehal
B obtains ouktcome © or 17

By

WU, ® 100Ny =5 = [®has= 10410}

AP0, ® |1>B<1\)\‘P>AB=% = 1) s

Now suppose that B doesnt tell A the outcome of the measurement. ALl
A can say is that her system is equally likely to be in either state!

RR



Reduced staktes of composite systems

Given a bipartite pure state |V),; , the description of each subsystem
s given bv tks

dB
pi= TP (T = Y I BTG

i2:1

dy
pp = Tra(| W) p(Y|) = Z ([T 4pCE D) 1)

i1=1

|
PA =5(|O>A<O| 1 IREED)

W) ap = \/g <|O>A|O>B + |1>A|1>B) ‘

1
A5 (10501 + 1 1)5(1 )

R3



Reduced staktes of composite systems

Criven a bipar&é&e pure state Ba 5

r <min(d,,dp)
W) ap = Z Ai Vi u;)
-l

gives us information about the

The Schmidt rank r cannot exceed min (d_A, 4_B) since not more
deqgrees of freedoms than the min of d_A and d_B, can be entangled between
both systems.

A has maximal Schmidt ranie and all

| |

ks Schmidt coeficients are equal 4; = 7 Example V) = — (|OO) + |11))
d i

dy=d,=2)

The Schmidt decomposition (SVD) only exist for BIPARTITE systems
24



Reduced staktes of composite systems

Griven a prarEL&e pure state | Y0 a5 5 we
should: (i) calculate the reduced density matrices of the subsystems

(iL) diagonalize them.

In the Schmidt basis, both reduced density matrices are diagonal (This is the
singular value decomposition’)

min(d,,d,)
W) ap = Z Ai [V u;)
==l
dl
Since pa = Trg(ly)aply ) = Z /1{2 [vi){(v;]
d2

pp = Tra(lwaplw ) = ) A7 Lu)(u;)

l

RE



1.4 Entanglement based Protocols: O
dense coding

Theorem 2: Holevo bound: n—-qubits carry more information
(classical) thawn wn biks (very important theorem)

Bob

i,m
&‘}Z

Quankunm

channel

RE



1.4 Protocols: super-dense coding

Super-Dense Coding: Alice wants to send (classical) to Bob
with a single use of a channel.

How? Sharing forhand a maximally entangled state !

Alice has bit a=(0,1) and the bit b=(0,1) and shares a maximally entangled state
of two qubits of the form:

1
D) 45 = —2(|OO> + | 11))

ALICE wank sko send: she does and sends her qu,bLE ko Bob BOR measures

1
00: do nothing |®*),p, —> | D) = —(|00) + | 11))
2

|
01: do Xrotation |®"),p—> |O ), 5= $(|OO> — | 11))

1

10: do NOT Z |®%),p — | )= 7(|01> + | 10))
2
|

1318 do iYrotation |®%),; — |¥ip) = 7(|01) —110))
2

R7



Example of the use of pure state entanglement:
super-dense coding

1
), . = —(]00) + | 11
PROTOCOL example: [PV a5 2(I )+ | 11))

1) if a=1 (b=1) apply a 0, (0,) to the qubit A of the state |DT),;.

(2) Send qubit A of |y),p to Bob

0
(3) Bob per{orms a CNOT gate CNOT = 8
1

O GO

1 O
0 1
0 0
0 0

RY



Example of the use of pure state entanglement:
superdense coding

|
(4) Bob p€r§orms a Hadamar gate on control target H = — (1 1 )

/2 \1 -1
(8) Bob measures on his qubits to extract the value of the 2 bits.
Lets do ik:
(L) write the protocol as a quantum circuit

(i) classical bits are used here a controled bits. 'Degendiv\g on their value Alice doe
one opero&ian or another.

(i) For instance i Alice wants to send (0,0), the Pra&maat gives the following
ouﬁpu&

1
| @Y up =p1 | P ) up = p3 —2( 10) +[1))|0) =p4 [00)

R



Whalt we saw 3@.5%@.1‘6&&3....

Definition 1: A composite pure quantum system is said to be in a

55 i
¥) = ) v,
=1

where |V) € Hpym = ®[|—I]i and |y;) € H..

Definition 2: Given a pure state |W¥),p , ik can always be
writken in

r <min(d,,dp)

W) ag = Z Ai [vis ;)

=

gives us waormaﬁom about khe



1.5 Mixed states: Ensembles of quantum states

Definition: An ( ) describes a
situation where a gquantum system can be in any one of a different
pure states ly;) € H wikh probabiii&v D;

EDWANA

It is customary to represent a particular ensemble of
quantum states as

P W) } » = Zpill:”z')(lljil
where p. > 0, Zpi = 1, that i5, a 0{

To each ensemble we can associake a cie.er\si,&v makrix bub ko

each cie.nsa&v malbrix we can associake

31



Recap: The Postulates of Q.M

in the most general terms Possibi&...

Postulate 1: Associaked bo any pkvsiaai s:js&em s a deusi&v opero&or
p € BM), p>0,tr(p) =1, If the svsﬁem s kihown to be iin state p, with
praba\bai&y p; thewn p = 2 D; Pis

l

Postulabe 2: The evolution of a quantum system is described b-j a
completely positive, (generally Eime—dependem&) trace non-increasing map
& : BMH,) = B(H, ) such that

p(H) =&, (p)

Postulate 4: The state of a composite quantum system is described by a

N
density operator p € X (®|]—|]i> . If the state of each constituent system is
i=1 .
glven b:; p; then the state of the aomposi&e Sjs&am o ® P;
i=1
32



The “world” according
to QIT: convex seb!

|y Xy | p =pily) vl +palwa) s | + s lws)(ys |

|y ) (v, | | W3><W3 |

Exkremal poav\&sz prcje&crs on pure skates
facets: some density makrix
side: ciemsiﬁv makrices



Composite systems in QIT:
convex sets and convex polytops

Correlations, even classical ones, mean

plab|xy) # p(a|x)p(y, b)




The world according to QIT:
convex sets and convex polytops

1. NS (Non-Signaling) Pys = plalx) = plalxy) =2, pab|xy)

pbly) =pb|xy) = X, plab]|xy)

Z —|plab|xy) =[ dA p(a|xA) p(b|yl)
A

3. Quantum Q —p(ab|xy) = Tr(p,plM,, & Mp,])

Z C Q C Pyy

A Bell inequality, is a linear inequality for the probabilities p (ab|xy )
that is necessarily verified by any model satisfying the locality
condition




Quantum

@ — p(ab|xy) = Tr(p,plM,), @ My,,]) @ Convex set whose extremal points
Roltd V) e x

\

%, Bell inequality

pERBI);, p>0; Tr(p) =1

p =2 pi| Y)Y,

The quantum world

AGN)




Entanglement in mixed states

Definition: A bipartite quantum state p,p € B(H, ® Hp) is said to be
it the can be written as

PAB = Zpi (P! ® p;) = 2 q; (lepae; | & |fp(fil)

with p;>0and Y pi=1,(q; > 0and ) q;=1). In other words the state p,,

is sepm*abte

To be separabte means bhat the stake can be prepm&d using
local mpera&éoms and classical communicakion, Such mperaﬁos are called
LOCC

37



Entanglement for

The following definitions are equivalent

1, P up # )4 @ | P)p

2. The Schmidt decomposition of |¥),p rank r>1

r <min(d,,dp)

W) ap = Z Ai [Vis ;)

i=1

3. |WY)yp violates a Bell inequality



Leckture 2

2.1 Entanglement guantification & measures
2.2 Entanglement for pure states
2.3 Entanglement for mixed states



2.1 Quantification of entanglement

Entanglement permits to do tasks that cannot be done with classica
states: superdense coding, teleportation, and other algorithms

Entanglement is therefore a RESOURCE for guantum information.
Free states are separable states and LOCC are free operatins.

Unit of entanglement is the e-bit, that is, the entanglement
contained in a maximally entangled bipar&i&e state of &wc;-mqubi&s

What is the entanglement in an owb:l&r&rv pure state |D,p5)?

What is the amount of entanglement in a mixed state p g ?

40



The set of composite
quantum systems

S epar oble Entangled




The set of composite
quantum systems

PAB

‘Q
‘Q
*



The set of composite
quantum systems

Entangled

@ Pip= P1(Pj X Pé) 3 Pz(ﬂj X Pé)

® /=g ®pL) + (P2 ® 2 + q3(55 R )



The set of composite
quantum systems

Saf’o‘ra“bi'e Entangled

How much entangled ?




o A measure of entanglement E mustk fullfill:
1. E(p) >20forVp € B(H, @ Hp)
2. E(04p) =0 if o4 = Z Pt ® 6 |, that is, if the

3. E(Uy® UgpU! ® U)) < E(p)

4. Given a LOCC map A, E(A(p)) < E(p)

5. (*) Convexity: it may happen that E(Z Dip;) < Z D,E(p,)
6. (*) Additivity E(p®") = nE(p)

o (L) Convexity and Additivity are not necessary !
o (ii) There are nmany different entanglement measures and normally
they are not equivalent!

4-5



2.2 Entanglement of pure states

Definition 2.1: The is the standard entanglement
measure used for bipartite pure state |y),p

E(ly)4p) = S(py) = S(pp)

where S(p) = —Trplog(p) is the and

pa(pp) are the reduced density matrices (marginals), Le.
pa = Trg(| W) ,p(¥])

There are two measures of bipartite entanglement conceptually

very important which lead to the definition of entanglement entropy.
The latter isthe unique measure of biparEiﬁa entanglement for pure
states which is operationally meaningful.

46



Entanglement of pure states

Kemarkes:

o f |Wip=1DP,) ® |y = E(|y),p =0 (product states have zero entanglement)

M
> f |P),p = Z \/Z le) | fr =Bl sr) = — Zﬂi log 4; (Shannon em&ro»pj)
=1

|
° 5“f |l//>AB i |T_>AB i ﬁ( | 01> e | 10)) = E(| lP_)AB) =1 (an @-"bfa&)

1 d
o i |PHup=—=) |i)]i) = E(¥*)yp) = log,d

Vd 5

o If the pure state is N-multipartite |P) 15 v we can always calculate the

entanglement entropy of a given bipartite splitting, te. E(|V),p5) where AB
is any bipartite splitting of the N parties

47



2.3 Entanglement of mixed states

Recall: To every ensemble of quantum states {pi, |l//l>} one can
assoclate a density operator p = Z pi lw)(y;| € B(H) .

Entanglement measures:

Definition 2.1: Given a bipartite mixed state p,p, the entanglement of
formation is defined as:

Ep(prp) = min ZpiE(ll//i>AB)
Pl ap)

(L) The infimum is taken over all possible ensembles
compatibles with the mixed state
(it) Meaning: The entanglement of formation tell us on average how
many entanglement is need to form the state

4%



Entanglement of mixed states

Ep(pyp) = min Zp,-E(ll//i>AB)
{pi’h;”l)AB}

The convex roof optimization is VERY HARD to do, but for 2-qubit
mixed stabtes ik can be computed via the concurrence.

Definition: The of a W) 45 L5 & measure
of entanglement given bj

C(ly)ap) = | (waplWyp) | where | @) o5 = oy Q oy | W>XB

using the computational basis {|oor,|ols,|105,]115}

49



Entanglement of mixed states

Definition: The of a LS & measure
of entanglement given b'j

C(pAB) — mm((),/ll 5O /12 7 /13 = /14)

where J; are the eigenvalues in decreasing order of the operator

R = \/ \/PaBPAB\/Pap where pyp = (0, ® 0))pi.(0, ® 0,)

Theorem: The entanglement of formation of a 2-qubit mixed state p,p
LS

1+ = 2

E(psp) = F(C(pap) = hl 5 |

and h[x] = —xlogx — (1 — x)log(1 — x)

£0



Entanglement of mixed states:
and

For (Hilbert space of dimension 2)

Entanglement cost and entanglement of distillation are two dual
measures defined in the assymptotic Limit.

1- How many singlets do I need to prepare a bipartite entangled state

PaBt

2- How many singlets can I distill from a given state p,p if I have
moany copies of the state.

&l



Entanglement of mixed states:
and

Definition: The entanglement cost of a mixed state p,p denoted by E(p,p) is the

infimum over all sequences of LOCC protocols such that given m-copies of the
singlet state |‘P_)I‘?gl

i iy such that D(p,0) — 0 where D is a proper distance.
n—oo

The entanglement cost of p,, is defined as

: o e
E.(pyp) = min (lim —)
LeELOCC n—oo N

E(p3r
E(p,p) = lim F(PAB

n— o0 n

n simple words i defines the number e -bits one needs to create a entangled
state 0 which is the closest to the one we could achieved i we had n copies of

our state using only LOCC apero\&ov\s. Ly

82



Entanglement of mixed states:
and

Definition: The entanglement of destillation of a mixed state p,,; denoted by
Ep(pap) ts the suprem over all sequences of LOCC protocols L such that given
n-copies of our state pj%”
singlels is zero U the assymptlotic Limit.

we approm:h a stake whose disktance to I‘P_)fl’f

1f this is not possible Ep = 0. The entanglement of distillation is the
supremum over all possible destillation rates.

The entanglement distillation of p,p is defined as

.o
Ey(psp) = max (lim —)
LELOCC n—w N

where D(|P7)®".6) - 0

n—oo

&3



Entanglement cost and entanglement distillation

The entanglement of destillation is always smaller equal to the
entanglement cost

Ep(pap) < E(pap)

Theorem. Any other measure of entanglement fullfills

Ep(pap) < E(pap) < E(ppp)

However, ;
the entanglement cost and the entanglement of distillation coincide and
are given bj the von Neumann entropy of the su,bs:,s&ems

E(ly)ap) = S(py) = S(pp)

54



Entanglement of bipartite mixed states

Nego&i;vi;ﬁj

Definition: The of a composite quantum systems p,p is the
absolute sum of the neqative eigenvalues of the

T
2 ]
e i ABZ" where ||A|| = Tr(VATA)

&6



Definition: Let pyp be a bipartite density matrix that can be expressed as

pas= 2, PUDGDA® [)lp)
1<i,j<d,
1 <up,v<dpg

the of the d&hsiﬁy mabrix p,p
Ls

pas= 2 PEUNGDA® 1) wlp)
1 <i,j<d,
ISﬂ,VSdB

A similar definition exist for the partial transpose w.rt subsystem B

&6



Emhv\gﬂ@.mav& MEaSuUres

: PAB + So
R(pap) = Minyes ser ( e €S )

I, ® g ¢
® EMEQHQL@ pAB: — /165 + (1 — /1) | ‘I’>AB<\P |

Separabi& S

How much entangled ?
Theorem : Any other entanqgled measure is between
these btwo.



Entanglement Criteria

PPT criterion. If a stake p,p is separable, then p,t > 0 and
Pan=(pp)" 20
Proof: Trivial applying partial tramsposition on a separabte state. A state that

fullfills their partial transposes are positive is called a PPT (PQSLEL\/@; partial
Eramsgose) state.

Recall: pATg > 0 means its eigenvalues are all larger or equal zero.

1f dim(H,) X dim(Hp) < 6, PPT is sufficient and necessary to proof
the state is separable.

In higher dimensions, PPT criterion is NECESSARY for separability but not
SUFFICIENT, meaning that there are states that are and fulfill thak

T
pATg >0 and p, 3 20,

-4



Entanglement Criteria

Entropy entanglement criterion. If a stote p,p is separable,
thewn

S(pap) = S(py) and S(pap) = S(pp)

where S(p) = — Tr(plogp) is the von Neumoann entropy of the state.

From all operationa entanglement criteria, PPT is probably the
strongest but there are entangled states that are detected by the
majorization or by entropy criterion that are not detected by PPT.

&9



Nown operational Entanglement Criteria

There are entanglement criteria that ciepemdk oh the state we consider,
for that reason they are called non-operational criteria

Lewima: Tr(pZABaAB) = Tr(pABGZg)

Han-Banach theorem. Let § be a convex compatct set in a
finite dimensional Banach space. Let p be a poi&x& with p € § then there
exist a hyperplane thot separates p from $

kij@" ptane
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| “'Mﬁangiemamﬁ wikiness

Definition: An Hermitian operators (observable) W is called an
entanglement withess (EW) f and only 3

1. Tr(Wpg) >0 Vp € S where § is the set of separabi.e skates

2. There exist at least one state p such that Tr(Wp) < 0O

kvper F'Lane
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EM&&MSLQMQM wikiness

Definition: An entanglement withness is called decomposable if and only if there
exsist operators P and @ such that

W=P+ Q' with P,Q >0

Lemma: A decomposable entanglement withess cannot detect PPT entangled states

1. p is entangled f and only f there exist a withess W that detects ik: Tr(Wp) < 0.

2. p is an entangled PPT state if and only if there exist a non decomposable
entanglement withness that detects ik

3. 0 is a separable state if and only f Tr(Wo) > 0 for all entanglement witnesses.
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Entanglement withess

The structure of the space of quantum states

S se[mbte stakes \ decampsabie wibhnes.
P QM&Q&\S‘L@C& skakes Mon—deaompasabte wibtihness
NPT entangled states
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EZM%&MSLQMQM wikiness

Example: Let us construct a witness for a bipartite pure maximally

100 + | 11)

V2

A wibkhness c:»[pe.ra&or is immediate consbruct as W= Q%1 = (| DYDY )

entangled state. We talke |DT) =

(1/2 0 0071 (D0 0 20

0O 00 O T, g 0 172 0 Fo
O 0O 00 O 2 100 0 ( el

(172000 R R 0 b s

To show Ehalk W is a wilhess we heed ko show Ehab



EZM%&MSLQMQM wikiness

To show that W= 0% = (|0 D)4 is a wilhness we need to show

(L) Tr(Wpg,,) = 0, this is equivalent to show that
Tr(W |e,f)(e,f]) = (e,f|W]e,f) > 0. It suffices to write
le) =a,|0)+by|1),and |[f) =a,|0)+b,|1), witha,b, € C

(iL) There exist one entangled state such that Tr(Wp,) < 0. Choose
pe = |¥)(Y |, Trivially Tr(Wp,) = — 1

(192 00 W
0 0 1050 o
0T = i Tt o il (i e

. 0 0 1 1A




