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ka

1. is ot the heart of quantum physics

2. Quantum information Llooks for information-
processing tasks that (might) offer quantum
advantage.

3. Understanding the basic ingredients of quantum
advantage forms the foundation for quantum
technological applications.

4 Ls hecessary for many of those
applications.



In these lectures:

First, we will warm up with the postulates of @M & notation
A (bipm&i&e} pure states
Look at nown- brivial that use pure entangled states.

' Introduce the problem of for mixed
states.

using criteria: partial transposition,
ma jorization, cross-norm, covariance makbrix, entanglement
withesses and quantum maps.

Complementary to the lectures of Otfried Ghine/ Eugene Polzik
3



Lecture 1

1.1 Postulates (warm-—up)

1.2 Comyc}si&e svs&ems

1.3 Entanglement in pure states

14 Protocols that use entangled pure states
1.5 Mixed states

1.6 Entanglement in mixed states



1.1 The Postulates of @M—Recap

POSTULATE 1: Associaked to any ijsacat Sjsﬁem is a
The s-js&em is compi.e&etj deseribed bv tks 7

) € H, which is a unit vector in the system’s state space.

POSTULATE 2: The evolution of the state of a
quantum system is given bj

lw(t)) = U@)|y)

where U(?) is a opero&on



POSTULATE 3: Measurements are described by any collection of
operators

{Mm:I]-I]—>[H]|ZM,;CLMm:I]}

where denotes the measurement

1f the system is in state ) € H, then the of observing
outcome m is given bv

P = (WIMIM, )

M, |y)

o

: Measuring a qubit: 2 operators M_o =|oXo| and M_1= |1 X 1]

and the state is |¢,) =



Postulate 4: The state space of a composite physical system is given bv
the tensor produck of the state spaces of each of its constituent parts

Remarie: Notice that the tensor pradua& ts kthe ONLY way ko preserve the
superposé&&om prmcipte and all other 9. proper&i&es LA comyosi&e s:jsfzems!

System A + B

IH]A+B#|H|A+|H]B lO? + !17 NO!



1.2 Comyas&e Sjs%emsﬂ

Properties of the tensor produa&

Definition 1: Let Hy, H, be two vector spaces of dimension d;,d,
respectively. Suppose that {|l1>} is an orthonormal basis of H, and

{li,)}% | an orthonormal basis c:v{ [H]z.
Iy=

Then an of H=H, ® H, is

i) @ lipp ), iy € (Lo, dy), i € (1,0, dy)



Properties of tensor product

1. Let H=H; ® H,. Then [H| = |H,| X |H,;| where |H|=d denoctes the
dimension of the Hilbert space.
2. Whenver the of H is , & Hilbert space is equivalent
to o complex vector space. (see lectures of £, Polzik)

3. Suppose |[y)p = [P)4 ® |1)p, with |P), = Z ¢ liy) and |y)p = Z)(z Ly,

=1 =1

wikth {|11)}i1=1, {|12)}l.2=1 orthonormal basis of H,, H,. Then

e e \

) = Zcblllzo S| SRS Y oer i AT SIS 4y

ll_ \12:1 } 11—1 12— ll_l 12—




= j bﬁ
q b :j |W>AB | >A |)(>Bl {l 1 1
Equivalently, D)y Q ’ and le
or T { 9 Then

(

(Y1 (X1 \ 451:)( 1
1/1:12 ¢1 \)(;12 ¢1)(d2
e K Dol Al x 42
Y21 ot :

: 5 s

| lP>AB T : e \)(d2 ¢2.)(d2
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Properties of the tensor product

. Let H=H, ® H,. Then |[H| = |H,| X |H,]

. Suppose |y) = |@) ® [x), and let {|i1)}Z1:1, {|i2)};i2=1 be orthonormal
dy  dy
basis of Hy, Hy. Then [y) = 2 Z b xli) ® in)
i=1i,=1

SupposeB:[l-l]lﬁl]-ﬂl, C=H, > H,, Then A=BQRC; A:H->H, is
given bv

A= ZBil,j1|i1><j1| ® Zciz,j2|i2><j2|

= 2 2 BiiCag v i)
ilajl i2aj2

11



Properties of the tensor product

E’Zx[pi.iti&i.fj , the

A11,12

)
Alg,

Add, dod;

12
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Properties of the tensor product

N
Definition 2: Lek H=@)H,. A waitary U:H - H is said to be a
=1
W U=, U, U=

Gtherwise the opera&ia-n ts said ko be

N

Definition 3: Let H = ®I]—|]i. A measurement with operators
=

{M,:H - [I-[I}ZZ_1 is said to be U

M, = éM]g’)
=1

obherwise the measurement is said ko be

s of the form

13



Recall: properties of the tensor product
1. Let H=H, ® H,. Then the dimension of |H| = |H,| X |H,|

d, d,
2. Suppose [y) = |§) ® |y), where [) = ) ¢, i) and [y) = ) 1, lir) with

o= =
{|i1)}f1_1, {|i2)}fz_1 two orthonormal basis of H, H,. Then
15" 257

did,
W)= D) dixlin) ® lin)

3. Suppose A:H; - H;, B=H)—=>H,, Then C:H->H,C=AQ B is given bj

A=) Y B Coilintil ® )il = ), D B, ;i i)

LsJ1 )2 LsJ1 )2

14



Compos&&@. s:;s&ems: meaning

Postulate 4: The state space of a composite physical system is given
by the tensor product of the state spaces of each of its constituent

Fsm‘Es
[HlTotal [Hll ® HZ ® [Hl3 ® ® [Hl
- Q
k=1
Tensor produ,c&s can be used ko describe the kokal state space
of a physical system. E.q.,, consider describing both the position

as well as the angular momentum of a particle

[HlTotal |H]Posmon X HAng Mom.

16



Cc:}m!z?osi;%@. svs%@.ms

The more prudent way of understanding the tensor product is that it
combines together Hilbert spaces associated to properties;
(Adifferent particles, position, energy, angular momentum of the same
particle etc etc eke)

: We will often omit the tensor s:jmbc:-i. en&ire.i.v writing

i) ® |ir) = |ijiy)

Definition 4: A composite quam&um system is said to be in a

. jid ®Wfl

where |V) € Hp, and |y) € H.,

16



1.3 Entangled states:

Definiktion §: A composite quantum system be written as a
productos state is said

N
') # ® ;)
i=1

1L



£ XA F?i.es

Let H, = H, with dimension d =2, Write the state |Y) € H, Q H, in
tensor product form

L) =%(|oo> +101) +110) + [11)) =

2. |¥) = ——1|00) + \/301)
: 0 :

I By i, P
3 I‘P>=\E|00>+\@61?I01>+\Ee’ZHOH\Ee’%IH)

o S = (100) + €[11)) ( IMPOSSIBLE !)

o
V2

1%



Entanglement: q. correlations

Entanglemet deals with a generic form of quanum correlations, and is

Linked to of the Hilbert space.
Entanglement is a . We shall
consider from now generically quantum states ( )
¥)ap € Hy ® Hp
(Obfried Ghine will tell us about quantum systems)

Entanglemet is arquably the
as allows to perform tasks that otherwise are impossible.

Entanglement is considered to be a for gquantum information
tasks, There are obther resources as for instance coherence, Latat&j,
asvmmeErv, eke..

19



BiparE£E€ Entanglement

Theorem 4 : Leb ) € Hy ® Hy. Then, there exist two
orthonormal basis {|vl-)}§'i1 & H i {|ui)}fi1 € Hp such that

r<min(d,,d,)

ly) = Z Ai [V w;)
: i=1
where 4, > 0, Z A7 =1 are called of the state.
]

. The number of non-zero Schmidl coefficients of the state is called
the of the state, whereas the basis {|vi)}f;1 e H,, {|ui)}fi1 € Hg
s kowi as the of the state.

. A bipartite state Ut has Schmidk rank = 1,
otherwise it is entangled.,

. The Schwmidk deaompasi&imn is nothing else than the Singular Value
Decomposition: Given a not square matrix A = U D V where D is diagonal and
U and V are uni&arj.

20



Reduced states of composite systems

Consider two parties—Alice and Bob—each of which hold part of a
composite quantum system ua some state |V),; € Hyp = Hy @ Hp, where
|Hy | = dy, |Hp| = dp,

How should Alice (Bob) describe the state of their respective system?

Clearly f [ Phap = 19)a ® 1)p where |9), € Hy, |x)p € Hp then
everv&hihg ts OK!

What abouk
r <min(d,,dp)

ly) = 2 Ai Vi ;)

=1

1l



Reduced states of composite systems

Consider the bipar&i&e sktate

|W)ap = \/g (‘O>A‘O>B + ‘1>A‘1>B)

Su,ppose B measures i bhe skandard basis. What is the Prababéti&v Ehal
B obtains ouktcome © or 17

By

WU, ® 100Ny =5 = [®has= 10410}

AP0, ® |1>B<1\)\‘P>AB=% = 1) s

Now suppose that B doesnt tell A the outcome of the measurement. ALl
A can say is that her system is equally likely to be in either state!

RR



Reduced staktes of composite systems

Given a bipartite pure state |V),; , the description of each subsystem
s given bv tks

dB
pi= TP (T = Y I BTG

i2:1

dy
pp = Tra(| W) p(Y|) = Z ([T 4pCE D) 1)

i1=1

|
PA =5(|O>A<O| 1 IREED)

W) ap = \/g <|O>A|O>B + |1>A|1>B) ‘

1
A5 (10501 + 1 1)5(1 )

R3



Reduced staktes of composite systems

Criven a bipar&é&e pure state Ba 5

r <min(d,,dp)
W) ap = Z Ai Vi u;)
-l

gives us information about the

The Schmidt rank r cannot exceed min (d_A, 4_B) since not more
deqgrees of freedoms than the min of d_A and d_B, can be entangled between
both systems.

A has maximal Schmidt ranie and all

| |

ks Schmidt coeficients are equal 4; = 7 Example V) = — (|OO) + |11))
d i

dy=d,=2)

The Schmidt decomposition (SVD) only exist for BIPARTITE systems
24



Reduced staktes of composite systems

Griven a prarEL&e pure state | Y0 a5 5 we
should: (i) calculate the reduced density matrices of the subsystems

(iL) diagonalize them.

In the Schmidt basis, both reduced density matrices are diagonal (This is the
singular value decomposition’)

min(d,,d,)
W) ap = Z Ai [V u;)
==l
dl
Since pa = Trg(ly)aply ) = Z /1{2 [vi){(v;]
d2

pp = Tra(lwaplw ) = ) A7 Lu)(u;)

l

RE



1.4 Entanglement based Protocols: O
dense coding

Theorem 2: Holevo bound: n—-qubits carry more information
(classical) thawn wn biks (very important theorem)

Bob

i,m
&‘}Z

Quankunm

channel

RE



1.4 Protocols: super-dense coding

Super-Dense Coding: Alice wants to send (classical) to Bob
with a single use of a channel.

How? Sharing forhand a maximally entangled state !

Alice has bit a=(0,1) and the bit b=(0,1) and shares a maximally entangled state
of two qubits of the form:

1
D) 45 = —2(|OO> + | 11))

ALICE wank sko send: she does and sends her qu,bLE ko Bob BOR measures

1
00: do nothing |®*),p, —> | D) = —(|00) + | 11))
2

|
01: do Xrotation |®"),p—> |O ), 5= $(|OO> — | 11))

1

10: do NOT Z |®%),p — | )= 7(|01> + | 10))
2
|

1318 do iYrotation |®%),; — |¥ip) = 7(|01) —110))
2

R7



Example of the use of pure state entanglement:
super-dense coding

1
), . = —(]00) + | 11
PROTOCOL example: [PV a5 2(I )+ | 11))

1) if a=1 (b=1) apply a 0, (0,) to the qubit A of the state |DT),;.

(2) Send qubit A of |y),p to Bob

0
(3) Bob per{orms a CNOT gate CNOT = 8
1

O GO

1 O
0 1
0 0
0 0

RY



Example of the use of pure state entanglement:
superdense coding

|
(4) Bob p€r§orms a Hadamar gate on control target H = — (1 1 )

/2 \1 -1
(8) Bob measures on his qubits to extract the value of the 2 bits.
Lets do ik:
(L) write the protocol as a quantum circuit

(i) classical bits are used here a controled bits. 'Degendiv\g on their value Alice doe
one opero&ian or another.

(i) For instance i Alice wants to send (0,0), the Pra&maat gives the following
ouﬁpu&

1
| @Y up =p1 | P ) up = p3 —2( 10) +[1))|0) =p4 [00)

R



Whalt we saw 3@.5%@.1‘6&&3....

Definition 1: A composite pure quantum system is said to be in a

55 i
¥) = ) v,
=1

where |V) € Hpym = ®[|—I]i and |y;) € H..

Definition 2: Given a pure state |W¥),p , ik can always be
writken in

r <min(d,,dp)

W) ag = Z Ai [vis ;)

=

gives us waormaﬁom about khe



1.5 Mixed states: Ensembles of quantum states

Definition: An ( ) describes a
situation where a gquantum system can be in any one of a different
pure states ly;) € H wikh probabiii&v D;

EDWANA

It is customary to represent a particular ensemble of
quantum states as

P W) } » = Zpill:”z')(lljil
where p. > 0, Zpi = 1, that i5, a 0{

To each ensemble we can associake a cie.er\si,&v makrix bub ko

each cie.nsa&v malbrix we can associake

31



Recap: The Postulates of Q.M

in the most general terms Possibi&...

Postulate 1: Associaked bo any pkvsiaai s:js&em s a deusi&v opero&or
p € BM), p>0,tr(p) =1, If the svsﬁem s kihown to be iin state p, with
praba\bai&y p; thewn p = 2 D; Pis

l

Postulabe 2: The evolution of a quantum system is described b-j a
completely positive, (generally Eime—dependem&) trace non-increasing map
& : BMH,) = B(H, ) such that

p(H) =&, (p)

Postulate 4: The state of a composite quantum system is described by a

N
density operator p € X (®|]—|]i> . If the state of each constituent system is
i=1 .
glven b:; p; then the state of the aomposi&e Sjs&am o ® P;
i=1
32



The “world” according
to QIT: convex seb!

|y Xy | p =pily) vl +palwa) s | + s lws)(ys |

|y ) (v, | | W3><W3 |

Exkremal poav\&sz prcje&crs on pure skates
facets: some density makrix
side: ciemsiﬁv makrices



Composite systems in QIT:
convex sets and convex polytops

Correlations, even classical ones, mean

plab|xy) # p(a|x)p(y, b)




The world according to QIT:
convex sets and convex polytops

1. NS (Non-Signaling) Pys = plalx) = plalxy) =2, pab|xy)

pbly) =pb|xy) = X, plab]|xy)

Z —|plab|xy) =[ dA p(a|xA) p(b|yl)
A

3. Quantum Q —p(ab|xy) = Tr(p,plM,, & Mp,])

Z C Q C Pyy

A Bell inequality, is a linear inequality for the probabilities p (ab|xy )
that is necessarily verified by any model satisfying the locality
condition




Quantum

@ — p(ab|xy) = Tr(p,plM,), @ My,,]) @ Convex set whose extremal points
Roltd V) e x

\

%, Bell inequality

pERBI);, p>0; Tr(p) =1

p =2 pi| Y)Y,

The quantum world

AGN)




Entanglement in mixed states

Definition: A bipartite quantum state p,p € B(H, ® Hp) is said to be
it the can be written as

PAB = Zpi (P! ® p;) = 2 q; (lepae; | & |fp(fil)

with p;>0and Y pi=1,(q; > 0and ) q;=1). In other words the state p,,

is sepm*abte

To be separabte means bhat the stake can be prepm&d using
local mpera&éoms and classical communicakion, Such mperaﬁos are called
LOCC

37



Entanglement for

The following definitions are equivalent

1, P up # )4 @ | P)p

2. The Schmidt decomposition of |¥),p rank r>1

r <min(d,,dp)

W) ap = Z Ai [Vis ;)

i=1

3. |WY)yp violates a Bell inequality



Leckture 2

2.1 Entanglement guantification & measures
2.2 Entanglement for pure states
2.3 Entanglement for mixed states



2.1 Quantification of entanglement

Entanglement permits to do tasks that cannot be done with classica
states: superdense coding, teleportation, and other algorithms

Entanglement is therefore a RESOURCE for guantum information.
Free states are separable states and LOCC are free operatins.

Unit of entanglement is the e-bit, that is, the entanglement
contained in a maximally entangled bipar&i&e state of &wc;-mqubi&s

What is the entanglement in an owb:l&r&rv pure state |D,p5)?

What is the amount of entanglement in a mixed state p g ?

40



The set of composite
quantum systems

S epar oble Entangled




The set of composite
quantum systems

PAB

‘Q
‘Q
*



The set of composite
quantum systems

Entangled

@ Pip= P1(Pj X Pé) 3 Pz(ﬂj X Pé)

® /=g ®pL) + (P2 ® 2 + q3(55 R )



The set of composite
quantum systems

Saf’o‘ra“bi'e Entangled

How much entangled ?




o A measure of entanglement E mustk fullfill:
1. E(p) >20forVp € B(H, @ Hp)
2. E(04p) =0 if o4 = Z Pt ® 6 |, that is, if the

3. E(Uy® UgpU! ® U)) < E(p)

4. Given a LOCC map A, E(A(p)) < E(p)

5. (*) Convexity: it may happen that E(Z Dip;) < Z D,E(p,)
6. (*) Additivity E(p®") = nE(p)

o (L) Convexity and Additivity are not necessary !
o (ii) There are nmany different entanglement measures and normally
they are not equivalent!

4-5



2.2 Entanglement of pure states

Definition 2.1: The is the standard entanglement
measure used for bipartite pure state |y),p

E(ly)4p) = S(py) = S(pp)

where S(p) = —Trplog(p) is the and

pa(pp) are the reduced density matrices (marginals), Le.
pa = Trg(| W) ,p(¥])

There are two measures of bipartite entanglement conceptually

very important which lead to the definition of entanglement entropy.
The latter isthe unique measure of biparEiﬁa entanglement for pure
states which is operationally meaningful.

46



Entanglement of pure states

Kemarkes:

o f |Wip=1DP,) ® |y = E(|y),p =0 (product states have zero entanglement)

M
> f |P),p = Z \/Z le) | fr =Bl sr) = — Zﬂi log 4; (Shannon em&ro»pj)
=1

|
° 5“f |l//>AB i |T_>AB i ﬁ( | 01> e | 10)) = E(| lP_)AB) =1 (an @-"bfa&)

1 d
o i |PHup=—=) |i)]i) = E(¥*)yp) = log,d

Vd 5

o If the pure state is N-multipartite |P) 15 v we can always calculate the

entanglement entropy of a given bipartite splitting, te. E(|V),p5) where AB
is any bipartite splitting of the N parties

47



2.3 Entanglement of mixed states

Recall: To every ensemble of quantum states {pi, |l//l>} one can
assoclate a density operator p = Z pi lw)(y;| € B(H) .

Entanglement measures:

Definition 2.1: Given a bipartite mixed state p,p, the entanglement of
formation is defined as:

Ep(prp) = min ZpiE(ll//i>AB)
Pl ap)

(L) The infimum is taken over all possible ensembles
compatibles with the mixed state
(it) Meaning: The entanglement of formation tell us on average how
many entanglement is need to form the state

4%



Entanglement of mixed states

Ep(pyp) = min Zp,-E(ll//i>AB)
{pi’h;”l)AB}

The convex roof optimization is VERY HARD to do, but for 2-qubit
mixed stabtes ik can be computed via the concurrence.

Definition: The of a W) 45 L5 & measure
of entanglement given bj

C(ly)ap) = | (waplWyp) | where | @) o5 = oy Q oy | W>XB

using the computational basis {|oor,|ols,|105,]115}

49



Entanglement of mixed states

Definition: The of a LS & measure
of entanglement given b'j

C(pAB) — mm((),/ll 5O /12 7 /13 = /14)

where J; are the eigenvalues in decreasing order of the operator

R = \/ \/PaBPAB\/Pap where pyp = (0, ® 0))pi.(0, ® 0,)

Theorem: The entanglement of formation of a 2-qubit mixed state p,p
LS

1+ = 2

E(psp) = F(C(pap) = hl 5 |

and h[x] = —xlogx — (1 — x)log(1 — x)

£0



Entanglement of mixed states:
and

For (Hilbert space of dimension 2)

Entanglement cost and entanglement of distillation are two dual
measures defined in the assymptotic Limit.

1- How many singlets do I need to prepare a bipartite entangled state

PaBt

2- How many singlets can I distill from a given state p,p if I have
moany copies of the state.

&l



Entanglement of mixed states:
and

Definition: The entanglement cost of a mixed state p,p denoted by E(p,p) is the

infimum over all sequences of LOCC protocols such that given m-copies of the
singlet state |‘P_)I‘?gl

i iy such that D(p,0) — 0 where D is a proper distance.
n—oo

The entanglement cost of p,, is defined as

: o e
E.(pyp) = min (lim —)
LeELOCC n—oo N

E(p3r
E(p,p) = lim F(PAB

n— o0 n

n simple words i defines the number e -bits one needs to create a entangled
state 0 which is the closest to the one we could achieved i we had n copies of

our state using only LOCC apero\&ov\s. Ly

82



Entanglement of mixed states:
and

Definition: The entanglement of destillation of a mixed state p,,; denoted by
Ep(pap) ts the suprem over all sequences of LOCC protocols L such that given
n-copies of our state pj%”
singlels is zero U the assymptlotic Limit.

we approm:h a stake whose disktance to I‘P_)fl’f

1f this is not possible Ep = 0. The entanglement of distillation is the
supremum over all possible destillation rates.

The entanglement distillation of p,p is defined as

.o
Ey(psp) = max (lim —)
LELOCC n—w N

where D(|P7)®".6) - 0

n—oo

&3



Entanglement cost and entanglement distillation

The entanglement of destillation is always smaller equal to the
entanglement cost

Ep(pap) < E(pap)

Theorem. Any other measure of entanglement fullfills

Ep(pap) < E(pap) < E(ppp)

However, ;
the entanglement cost and the entanglement of distillation coincide and
are given bj the von Neumann entropy of the su,bs:,s&ems

E(ly)ap) = S(py) = S(pp)

54



Entanglement of bipartite mixed states

Nego&i;vi;ﬁj

Definition: The of a composite quantum systems p,p is the
absolute sum of the neqative eigenvalues of the

T
2 ]
e i ABZ" where ||A|| = Tr(VATA)

&6



Definition: Let pyp be a bipartite density matrix that can be expressed as

pas= 2, PUDGDA® [)lp)
1<i,j<d,
1 <up,v<dpg

the of the d&hsiﬁy mabrix p,p
Ls

pas= 2 PEUNGDA® 1) wlp)
1 <i,j<d,
ISﬂ,VSdB

A similar definition exist for the partial transpose w.rt subsystem B

&6



Emhv\gﬂ@.mav& MEaSuUres

: PAB + So
R(pap) = Minyes ser ( e €S )

I, ® g ¢
® EMEQHQL@ pAB: — /165 + (1 — /1) | ‘I’>AB<\P |

Separabi& S

How much entangled ?
Theorem : Any other entanqgled measure is between
these btwo.



EZME&MS lement leclktures

UP ko now...

o

o

o

We have learnt how to describe states of composite systems via the tensor product

We have learnt what is the Schmidt decomposition of pure biyar&i&e quantum states

We have Learnt how to use the marginals of pure composite systems to determine if a bipartite
pure state is separable or entangled

We have introduced ensembles of pure quantum states and how to eﬁac&ivei.v describe them via

the dansi&v opera&or p = Z D; | l//,><l//,|

l

We have described the convex set of quantum states with its extremal points

We have defined the properties an entanglement measure must fulfill

We have inktroduced as the proper measure for bipartite states
E(ly)ap) = S(py) = S(pp), where S(p) = — Trplog(p) is the von Neumanin entropy.

We have introduced the as a measure for

We have introduced the as a mesure for

We have inkroduced what are opera&iov\at entanglement measures and what geometrical
entanglement measures.

-4



Leckture 3:

3.1 Ewntanglement criteria

3.2 OFQrQELOMQL criteria

3.3 Nown opam&ﬁonat criteria

34 Quonbtum maps and the Choi-damiolikowski isomorphism
3.8 Schmidt number of mixed bipartite states

o You will become members of “the church of the larger Hilbert space”



3.1 Entanglement criteria

Is my guantum state separable (entangled) ?

must be satisfied, but sa&isfjing alone does not
quarantee that the statement is true

f satisfied, quarantees the statement is true,
but not fullfilling it does nok necessary mean the statement is false

Characterization, verification and detection of entanglement is
CRUCIAL



Sufficent and necessary entanglement criteria for

Recall: For biyara&i&e skates Schwidt detomyosi&iom tell us

everthing aboubt the skake

Theorem 3.1 If o state p,p is
separable, then

S(pap) = S(py) and S(psp) = S(pp)

where S(p) = — Tr(plogp) is the von Neumann em&ropv of the state.

&l



3.1 Entanglement vmﬁfi&a%wn

. If o stake p,p is sepambi.e, thewn pATAB > 0

and p,i = (p,p)" 20

Definition: Let pyp be a bipartite density matrix , its partial transpose wrk A reads

pap= D, PPUDGDA® 1)) pia= B L) (i), @it )
1 i<, 1<i,j<d,
1 <upu,v<dy 1 <pu,v<dy

A similar definition exist for the partial transpose w.rt subsystem B.

Example: in the computational basis |00),]01),]10),|11) transpose wat B0 [01)(00] — [00)(01 |

Fa b e d) (la b f\

v b* e Hele : ook bl e sinnie
PAB = c¥ f* h i ALV St — % AR c¥ d¥ h i*
\d XN j) \f B )
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3.1 Entanglement crikeria

If a state p,p is separable, then pA% >0 and pTB — (pAA)T >0
Wigner theorem: Operations in a system must be Unitary U Ul = Uil = 1,
or Antiunitary AAT=ATA = —
PPT is equivalent to apply (U; ® A)p (U ®A)) f pp=p; ®p, — Uip, U ® Ayp,Al

A state that fullfills their partial transposes are positive is called a PPT (positive partial
Eramspose) state.

Recall: p 5 = U means its eigenvalues are all larger or equal zero.

Theorem: I dim(H,) X dim(Hg) < 6, PPT is to proof the state is
separable,

In higher dimensions, PPT criterion is NECESSARY for serparabuu&? but not SUFFICIENT,
meaning that there are states that are and fulfill that p A > (0 and pTB > 0.

&3



The space of guantum
states

PET-
Se par able entangled NPT-Entangled




Non opera&ionat Entanglement Criteria

There are entanglement criteria that ciepenci oh the state we consider,
for that reason they are called non-operational criteria

Lewima: Tr(pATgaAB) = Tr(pABGZg)

Theorem 2.4: Hann-Banach theorem. Lek S be a convex compalct set in
a finite dimensional Banach space. Let p be a point with p € S then
there exist a hyperplane that separates p from $

kjjf’e‘" F'Lane

&S



EZM%&MSLQMQM wikiness

Definition: An Hermitian operators (observable) W is called an
entanglement withess (EW) if and only i

1. Tr(Wps) 20 Vp € S where § is the set of separable states

2. There exist at least one state p such that Tr(Wp) < 0O

S (separable) \

kv[p&rgiana
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EZM%&MSLQMQM wikiness

Definition: An entanglement withness is called decomposable if and only if there
exsist operators P and @ such that

W=P+Q" with P,Q >0
Lemma: A decomposable entanglement withess cannot detect PPT entangled states
Theorem 3.8
1. p is entangled if and only U there exist a wibhess W that detects ik: Tr(Wp) < 0,

2. p is an entangled PPT state f and only if there exist a hon decomposable
entanglement withness that detects it

3. 0 is a separable state if and only f Tr(Wo) 2 0 for all entanglement withesses.

&7



EM&&MQ lement wikiness

The structure of the space of quantum states

NPT

S SQF'&bLQ states d&tomposa\bia wibhes
??T Qh&&hgiﬁc& sEa&@_s sr\om“daﬁompasabte wiktiess

NPT entangled states

&Y



EZM%&MSLQMQM wikiness

Example: Let us construct a witness for a bipartite pure maximally
|00) + | 11)

V2

A wibkhess ope_raﬁa»r is immediate constructed as W= Qs = (|PTY(DT| )

entangled state. We talke |DT) =

(1/2 0 0 1/2)/00) 112 0. 0.
. | oo 0 0 L1 0 0 12 R g -
Q000010> 2 01/2oo(|><|)
172701 1)) 1) N e

To show Ehalk W is a wilhess we heed ko show Ehab



Entanglement withess

To show that W= 0% = (|OTW D)4 is a wilhness we need to show

1. Tr(Wpgep) 2 0

but this is equivalent to show that Tr(W |e, f){e,f|) = (e,f|W|e,f) >0,
since any separable state is a convex combination of projectors onto
product states.

It suffices to write
le) =a,|0)+by|1),and |f) =a,|0)+b,|1), witha,b, € C

2. There exist at least one entangled state such that Tr(Wp,) < 0,
Choose p, = |V )(P|. Trivially Tr(Wp,) = — 1

(1/2.50. 0" .07
0 0 1/2 W
0 /20
L0 0 e

Q' = = (= b o)




Is there a relation
between PPT and EW?

Theorem : A state p,p € Hyp is entangled there exist a



Quanbum map, channel, OPQT’O&OT’S

Definition: The most general is described by a
CPTP map, that is a map A : B(H,) - BMH,,) sa&is{vis«g

1. Ap)=p"20
Tr(p) =1= Tr(A(p)) = 1

N N
A ( Z Pipi> i Z p; A(py)
=3 i=1

Leb pyp € A (I]-I]A(X)[HIB), Pap = 0. Then I]A®A(pAB) >0

The first property simply says that quantum operations must map
valid ciev\siiv OP&‘!‘O&OT’S to valid d&MsLEv operaﬁors.

These maps extend the concept of unitary evolution in iolated systems to
a broader class of physical processes,
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Cmmpi&& ‘Pc:a»siﬁviﬁv
Suppose that Alice and Bob share the entangled state

|
W) ap = % (‘OO i |11)
and Llet Alice perform an arbitrary operation on her part of the
composite system.

Complete positivity states that it does not wmatter with what other
systems our system of interest is related, acting locally on it should

not affect the remaining systems.

1f complete positivity failed then we could signal faster than Light!
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Positive bubt wnot CP-maps.

Definition: A quanﬁum map A:BMH) - BMH,) is called
if the induced map

I, ® A : B(CHQ B(H,) - B(CH® BH,,)
is FOSE,EE,\/@_,
where [, is the icieth&&v map on B(CH.
I A s for all integer values of Kk, then then map
is completely positive (CP).



Entanglement criteria
= P but not CF map

Example 1: A paradigmatic example of a map which is POSITIVE but not
C? is partial transposition:

Griven p,p = 0, then pZB > 0 as eigenvalues ARE INVARIANT
under T. However, there exist states such that pATg 7 0, such stakes

Example 2: Another example of k-positive but not CP maps is that of the
family of the form

Ay (p) =Tr(p) -1 —pp

Here, the map A is but not , for

18 il
L



What if the state is
PPT-entangled?

Definikion 1;: A A:FBMH) > BMH ) is said to be
can be wriltken as

A=%1+%2°T,

where &, and &, are a:c:-mpi.e&etj posé&v& maps and T: BMH) - BH,)
denotes the tramnsposition map.

Definition A A:BMH)—> BH,) is said ko be
cannot be written as

Azgl‘l‘%on,



Is there a relation
between PPT and EW?

Theorem : A state pup € Hyp is
there exist a posi&iv& map A:RBMHp) - B(Hp) such that:

(L) 1L ®Al(psp) 20. (the map is not CP)
(i) A#E +8,T,

so the map is not CP and is not detompcmsobte!



Linking maps and Entanglement witnesses

Definition: Given a map A : B(H,) - B(Hp),
J, € B(H, @ Hy) defined as

: Ip =04 @ N)(|OT (D)

where |O) = Z |ii) is the unnormalized naxinmally entangled state

O %A® %A ’dA — dlm(ﬂ‘ﬂA).

7%



Linking nmaps and Entanglement withesses!

, glven Iy € B(H, @ Hp), there exists an
associabted A:BMH,) > B(Hp) defined as

Ap) = Try [Jp(p" ® Tp)]

for any p € B(H,) and where p! denotes the transpose of p.
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Linking maps and Entanglement witnesses

ISOMORPHISM:
Ao,
U A Jy 20 is positive semidefinite
7 AN J\ >0 and brace=1
7 SN J\ 20

U A J\ 20

¥o



Is there a Schmidk
decomposition for mixed
stakes?

Definition: Given a mixed bipo\rﬁ&a quantum state p,p € AB(H, @ Hp),

which we denote as k = SN(p,p), is given by the
minimum over all ensembles that qenerate p,; of the maximal Schmidk
rank of the pure states in the ensemble:

k= 1inf max SR(|y))
{polw)} i

bypically convex roof extension!



How much entangled is
a mixed biparw:e state?

A quantum state p,p € D(H, ® Hp) has ot most Schmidt number k
U and only i, for every $k$-positive map A : B(Hp) - B(Hp),
it holds hak (1), ® A)psg > 0



1. Can we extend that to mut&iparﬁ%e s:js?:ems?

Choi-dJamiolkowski isomorphism cannot is a bipar&i&e concept.

2. Can we fully characterize bipartite entanglement?

The full characterization of quantum maps is NP hard !



UF’ to now...

-]

]

]

Q505 e
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We have learnt how ko describe states of composite systems via the tensor product

We have learnt what is the Schmidh decomposition of pure biyarkike quantum states

We have learnt how to use the marginals of pure composite systems to determine if a bipartite pure state is separable or entangled

We have introduced ensembles of pure quantum states and how to effectively describe them via the density operator p = Z il (v |
i

We have described the convex set of quantum states with its extremal points
We have defined the properties an entanglement measure must fulfill

We have introduced the entanglement entropy as the proper measure for bipar&i.&e pure states E(|w)p) = S(py) = S(pp), where S(p) = — Trplog(p) is
the von Neumann en&row.

We have introduced the concurrence as a measure for mixed stokes of 2 qubits

We have introduced the negativity as a mesure formixed states of 2 qudits (for NPPT-states only)

We have introduced what are operational entanglement measures and what geometrical entanglement measures..
We have introduced (sufficient) cntanglement criteria, in particular PPT criteria

We have showw that there exist entangled states that are PPT

We have introduced entanglement withesses EW

We have inkroduce quantum maps A and CPTP maps (quah&um channels)

We have define what is a k-positive map

We have shown that a quantum map can be Linked to an bounded operator via Choi-Jamiolikowski isomorphism
We have shown that NPT entangled stats are detected bj EW that are decomposobi.e

We have shown that PPT entangled states must be diected by EW which are not decomposable

We have defined the Schmidk number of a mixed state and Linked its detection to a k-positive map.

WE HAVE NOT SHOWN THAT A POSITIVE OPERATOR CAN BE UNDERSTOOD AS A VECTOR on an ENLARGED HILBERT SPACE, which can have associated
opara&ors Ehat act on it which can be understood as vectors on a more enlarged Hilbert space, which...... CHURCH of HILBERT SPACES



1. Working oh Entanglement is challenging but worth full

of surprises, connections with different field of mathematics and can
help to solve erobtems that have nothing to do with quantum physics

2. The bible of entanglement is skill

P. HORODECKI + M. HORODECKI + R, HORODECKI
Rev. Mod., ‘thsics 1999

but also there are many other contributions e.q. Otfried Gihne ones!

THANK Y0U FOR YOUR ATTENTION



